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C O N N E C T I O N  O F  THE D U A L  S P A C E  O F  A G R O U P  

W I T H  T H E  S T R U C T U R E  O F  I T S  C L O S E  S U B G R O U P S  

D. A.  K a z h d a n  

In this paper  is investigated the s t ruc ture  of discrete  subgroups of a Lie group (real and p-adic) with 
a finite volume fac tor  space.  In par t icular ,  it is proved that if r ~_ G is a d iscre te  subgroup of a simple 
group of rank* g rea t e r  then two, such that the volume of the fac tor  space G / F  is finite, then F has a finite 
number  of genera tors  and the group F / I F ,  F] is finite. In the case of real  numbers the f i rs t  theorem gives 
a positive answer  to par t  of a hypothesis of Zigel '  on the finiteness of the number  of sides of a fundamental 
polygon. In this development is used information on the s t ruc ture  of the dual space of the group F, the 
space of its unitary i r reducible  representa t ions  F. 

The paper  consis ts  of three par t s .  In par t  1 it is shown how the s t ruc ture  of F is connected with 
ordinary  proper t ies  of F. In par t  2 is shown how toobta in  knowledge of the s t ruc tu re  of r f rom the p r o -  
per t ies  of G. And, finally, in par t  3 is investigated G in the case where G is a Lie group of rank g rea t e r  
than two. 

1. Let G be a locally compact  group. The dual space of the group G (denoted G) is the set of unitary 
i r reducible  representa t ions  of this group with a topology. Let us descr ibe  this topology; more  precise ly ,  
let us descr ibe the basis  of a neighborhood of any representat ion.  Let there be given the representat ion 
G:g--*T(g) in the space L. We select  the vector  XEL, the compact  K in G, and the number  e>0.  Let us 
say that the representa t ion g--*T'(g), operat ing in the space L' ,  lies in an (X, K, e)-neighborhood of T(g) 
if there exists a vec tor  YEL '  such that I(T(g)X, X)- (T ' (g)Y,  Y)I < ~, when gEK. We denote by G the set  of 
all unitary representa t ions  with the same topology. Note that in the completion of any representa t ion lies 
all its subrepresenta t ions .  

We say that G possesses  the p roper ty  T if the trivial  representat ion is an open set  in G. The p ro -  
perry T is equivalent to another proper ty  of G: if the trivial  representat ion lies in the completion of the 
representa t ion PEG, then it enters  there in a l inear  te rm.  

Any compact  grouP possesses  p roper ty  T. The converse is true only in a weaker  sense.  

THEOREM 1. If a group possesses  proper ty  T, then the group G/[G, G] is compact .  

Proof .  It is evident that if G possesses  proper ty  T, then its f ac to r -g roup  also possesses  proper ty  T; 
fur ther  let us apply the duality of Pontryagin.  In par t icular ,  the group G must  be unimodular.  

THEOREM 2. Let r be a countable discrete  group with the p roper ty  T. Then F is a group with a 
finite number of genera to rs .  

Proof .  Enumerate  the elements of r :  ~/1 . . . . .  Tn . . . . .  Denote by F n the subgroup of F, generated by 
~l . . . . .  "/n. It must  be shown that an .n can be found such that F n = F. For  this it is sufficient to show that 
for  a cer tain n the subgroup rn  has the terminal  index in F. Assume this is not true.  We denote by Tn(T} 
the representat ion of F induced by the trivial representat ion of r n. Because the index of Fn is without 
bound in F,Tn(T) does not compr ise  a trivial representat ion of F. But in the space of the representat ion 
Tn(T) is a vec tor  which is invariant relative to rn.  Any compact  K in F consists  of a finite number of 
elements and therefore lies in F n when n>n (K). We have a r r ived  at a contradiction, since we obtained 
that in any (X, K, e)-neighborhood of a trivial representat ion of r l ies Tn(T) when n>n (K). 

HYPOTHESIS 1. If F is a d iscre te  group having proper ty  T, then it is a group with a finite number 
of correspondences .  

* The rank of a group G is the dimension of the maximal decomposed torus (in the real  case this is the 
vector  par t  of the mapped subgroup). 

Moscow State University.  Translated f rom Funktsional 'nyi,  Analiz i Ego Pri lozheniya,  Vol. 1, No. 1, 
pp. 71-74, January-March ,  1967. Original ar t icle  submitted October 10, 1966. 
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2. Let  us show now how to obtain information about the s t ruc tu re  of ]- f rom the p rope r t i e s  of G. 

THEOREM 3. Let  the group G have the p rope r ty  T; r is its c lose unimodular  subgroup with a finite 
volume f a c t o r - s p a c e .  Then F has p r o p e r t y  T. 

Proof .  Let  us examine the t r ans fo rmat ion  ~: ~-~G,  induced in the sense  of Frobenius  (in the con- 
s t ruct ion a unimodular  I ~ is  used).  

Theorem 3 follows d i rec t ly  f r o m  two p rope r t i e s  of this t ransformat ion :  

a) ~ is continuous; 

b) if P ~ ~ does not compr i s e  a t r iv ia l  r epresen ta t ion  of F, then ~(P) does not compr i se  a t r iv ia l  
r ep resen ta t ion  of G. 

P r o p e r t y  a) is der ived f r o m  the r e su l t s  of the pape r  [1]; however,  in the case  under considerat ion it 
is  eas i ly  proved.  

P r o p e r t y  b) follows at  once f rom the definition of ~. 

THEOREM 4. If we have a point sequence of topological groups:  0 ~ G '  ~ G - * G n u 0 ,  where  G' and 
G~posses s  p rope r t y  T, then G p o s s e s s e s  p rope r ty  T. 

The proof  is evident .  

3. We indicate now the c l a s s  of groups possess ing  p rope r ty  T. 

THEOREM 5. The group S1 (3, K) p o s s e s s e s  p rope r ty  T when K is any local ly compact  field which 
i s  n o t  discre te .  

The proof  of the t heo rem r e s t s  on a number  of l e m m a s .  We introduce the notation: 

H is s subgroup of the group S1 (3, K) of the f o r m  d . G' ,  G", S a re  r e spec t ive ly  subgroups of 
0 

ma t r i c e s  of the f o r m  

ti°i) °i) /i°i) l , a , 1 , 

0 c 0 

S' is a subgroup of the group S1 (2, K ) o f  the f o r m  (10 1 ) '  

LEMMA 1. If in a r ep resen ta t ion  of $1 (3, K) we have a vec to r  invar iant  re la t ive  to S, then it  is in- 
va r ian t  re la t ive  to S1 (3, K). 

Proof .  The corresponding a s se r t i on  for  S1 (2, K) and S' is p roved  in [2]. Therefore ,  the co r r e spond-  
ing vec tor  will be invar iant  re la t ive  to G' and G", and they genera te  S1 (3, K). 

COROLLARY. The r e s t r i c t i on  of any nontrivial  i r reducible  represen ta t ion  of S1 (3, K) on H is d i s -  
t r ibuted on i r reduc ib le  r ep resen ta t ions  of H, nontrivial  on S. 

LEMMA 2. In the complet ion in H of a r egu la r  represen ta t ion  of H is contained any i r reduc ib le  r e -  
presenta t ion  of H, nontr ivial  on S. 

I . emma 2 is eas i ly  p roved  by the methods of the paper  [3]. 

LEMMA 3. A t r iv ia l  r ep resen ta t ion  of H does not lie in the completion of a r egu la r  representa t ion .  

Lemma  3 follows f rom [2] and f rom the fact  that the r e s t r i c t ion  of a r egu la r  r ep resen ta t ion  of H on 
S1 (2, K) is multiply r egu la r .  

Theorem 5 follows at once f rom L e m m a s  1-3. 
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THEOREM 6. Let G be a simple algebraic group on K, containing a subgroup G' such that: a) G' 
is an algebraic group possess ing  proper ty  T, b) G' and the maximal compact  subgroup U generate G. Then 
G possesses  proper ty  T. 

(For real  and decomposable p-adic  groups b) follows f rom a). Apparently, this is always true.) 

We prove two lemmas as a p re l iminary .  

LEMMA 4. There exists such a number N that any element f rom G is distributed in the product over 
no g rea t e r  than N elements f rom G' and U. 

Proof .  For  real  and decomposable p-adic  groups the lemma follows at once f rom the decomposit ion 
G= UAU, where A is the vector  par t  of the mapped subgroup. (This decomposit ion is well-known in the 
real  case and for  decomposable p-adic  groups is proved in [4].) Since the decomposition G = UAU is obvi-  
ously always cor rec t ,  then we only projec t  a proof not using this decomposition. 

F i r s t  it is pointed out that there exists a finite number of elements  u~ . . . . .  u~; u] . . . . .  u n ~U such 
that the subsets  Gi = u i Gu i generate  G. Then the fact that Gi and G are  algebraic and the uncountability of 
the field K are used. 

LEMMA 5. Let G be a locally compact  group, T(g) be its invariant  representa t ion in the space L, 
and the vec tor  X6L be such that Re(T(g)X, X)_> e > 0. Then T(g) compr i ses  a trivial  representat ion.  

Proof .  It is easi ly seen that it is sufficient to prove the theorem for the subgroup G with a finite 
number  of genera tors ,  i .e . , for  the case where G is a f ree  group with genera tors  gi . . . . .  gn" 

Let us indicate an apparent proposit ion.  Let there be given in a Hilbert space L the n subspaces 
L 1 . . . . .  Ln. We denote by Pi the orthogonal project ions on L i, and by P the project ion on L 1 N L 2 N . . .  N 
L n. Then it happens that (Pl . . .  P n - l P n P n - 1  . - .  Pl) k ~ P  when k ~ ~o in the s trong opera tor  topology. 

We re turn  to the proof of the lemma for the free group. Assume that there does not exist  a vector  
invariant relat ive to T(gi). Using only that formulated proposition, one may easi ly construct  a sequence 
of positive func t ions fn  such that a ) f n  ELl(G), b) I f n l l  = 1, c) T(f n) s t rongly converges to the projeotion on 
L 1 N . . .  A Ln = 0. Here as always T(fn) denotes the opera tor  ~ [ (g )T (g ) .  But f rom the conditions of the 

g 
lemma and f rom tb~. proper t ies  a) and b) of functions f n  it follows that Re(T(/n) X, X ) -  e, and f rom the 
proper ty  c) it follows that T(fn)X--*0. The contradiction is obtained and Lemma 5 is proved. 

Let us re turn  to the proof of Theorem 6+ We examine the representa t ion P ~ in the space L, in the 
completion of which lies the tr ivial  representa t ion  G. Then there exists a sequence of vec tors  X n ~ L such 
that (T(g)X n, X n ) - - I  on any compact .  We prove that (T(g)X n, Xn) - - i  uniformly in G. Then the theorem 
will follow f rom Lemma 5. 

.L l Let us denote by L°U t,L°G'J '~ the subspace of vec tors  invariant relat ive to U(G'), and by LU(LG,) the 
corresponding orthogonal complements .  F r o m  the proper ty  T for U(G') it follows that the project ion of 

l .i Xn on LU(LG, ) converges  s t rongly to zero.  UsingLemma 4 and the fact  that the representat ion is unitary,  
we obtain the uniform convergence of (T(g)Xn,Xn) to unity. 

Thus, in par t icular ,  it is shown that if F C  G is a discrete  subgroup of a simple real  group G of 
rank g rea t e r  than two, such that the volume of the fac to r - space  G / F  is finite, then HI(U \ G /  r , z )  is 
finite and 7 r l ( U \ G / D  has a finite number of genera tors .  

lJ 

2. 

3. 
4. 

L I T E R A T U R E  C I T E D  

J.  M. G° Fell, Weak containment and induced representat ion of groups,  Can+ J. Math, 14, No. 2, 237- 
268 (1962). 
I. M. Gel'fand, M. I. Graev, and I. I. Pyatetskii-Shapiro,  Theory of Representations and Automorphic 
Functions {Generalized Functions, Vol. 6) [in Russian], Nauka, Moscow (1966). 
G. W. Mackey, Induced representa t ion of locally compact  groups. I, Ann. Math., 55, 101-139 (1952). 
N. Iwahori and H. Matsumoto, Regular elements of semisimple  algebraic groups, Publ. Math. IHES, 
No. 25, 5-48 (1965). 

65 


