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CONNECTION OF THE DUAL SPACE OF A GROUP
WITH THE STRUCTURE OF ITS CLOSE SUBGROUPS

D. A. Kazhdan

In this paper is investigated the structure of discrete subgroups of a Lie group (real and p-adic) with
a finite volume factor space. In particular, it is proved that if T © G is a discrete subgroup of a simple
group of rank* greater then two, such that the volume of the factor space G/ T is finite, then I has a finite
number of generators and the group I/[T,T] is finite. In the case of real numbers the first theorem gives
a positive answer to part of a hypothesis of Zigel' on the finiteness of the number of sides of a fundamental
polygon. In this development is used information on the structure of the dual space of the group I', the
space of its unitary irreducible representations I'.

The paper consists of three parts. In part 1 it is shown how the structure of I'is connected with
ordinary properties of I'. In part 2 is shown how to Obtain knowledge of the structure of T from the pro-
perties of G. And, finally, in part 3 is investigated G in the case where G is a Lie group of rank greater
than two.

1. Let G be a locally compact group. The dual space of the group G (denoted E}) is the set of unitary
irreducible representations of this group with a topology. Let us describe this topology; more precisely,
let us describe the basis of a neighborhood of any representation. Let there be given the representation
G:g —T(g) in the space L. We select the vector X¢L, the compact K in G, and the number £>0. Let us
say that the representation g — T'(g), operating in the space 1., lies in an (X, K, &)- nelghborhood of T(g)
if there exists a vector YeL' such that |(T(g)X, X) —(T'(g)Y, Y)| <&, when geK. We denote by G the set of
all unitary representations with the same topology. Note that in the completion of any representation lies
all its subrepresentatmns.

We say that G possesses the property T if the trivial representation is an open set in G. The pro-
perty T is equivalent to another property of G: if the trivial representation lies in the completion of the
representation P¢Q, then it enters there in a linear term.

Any compact group possesses property T. The converse is true only in a weaker sense.
THEOREM 1. If a group possesses property T, then the group G/[G, G] is compact.

Proof. It is evident that if G possesses property T, then itsfactor-group also possesses property T;
further let us apply the duality of Pontryagin. In particular, the group G must be unimodular.

THEOREM 2. Let I' be a countable discrete group with the property T. Then I'is a group with a
finite number of generators.

Proof. Enumerate the elements of I':vy,..., vp,-... Denote by I, the subgroup of I, generated by
Y1s+++s Yn. It must be shown that an n can be found such that I't,=T. For this it is sufficient to show that
for a certain n the subgroup I'y has the terminal index in I'. Assume this is not true. We denote by Tn(y)
the representation of 1"induced by the trivial representation of I',. Because the index of I, is without
bound in I',Tp(y) does not comprise a trivial representation of I'. But in the space of the representation
Tn(y) is a vector which is invariant relative to I',. Any compact K in I consists of a finite number of
elements and therefore lies in I'; when n>n (K). We have arrived at a contradiction, since we obtained
that in any (X, K, €)-neighborhood of a trivial representation of I' lies Tp(vy) when n>n (K).

HYPOTHESIS 1, I TI'is a discrete group having property T, then it is a group with a finite number
of correspondences.

*The rank of a group G is the dimension of the maximal decomposed torus (in the real case this is the
vector part of the mapped subgroup).

Moscow State University. Translated from Funktsional'-nyi,Analiz i Ego Prilozheniya, Vol. 1, No. 1,
pp. 71-74, January-March, 1967. Original article submitted October 10, 1966.
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2. Let us show now how to obtain information about the structure of I from the properties of G.

THEOREM 3. Let the group G have the property T; I is its close unimodular subgroup with a finite
volume factor-space. Then I has property T.

Proof. Let us examine the transformation rp I‘——-G induced in the sense of Frobenius (in the con-
struction a unimodular T is used).

Theorem 3 follows directly from two properties of this transformation:
a) ¢ is continuous;

b) if PeT does not comprise a trivial representation of I, then ¢(P) does not comprise a trivial
representation of G.

Property a) is derived from the results of the paper [1}; however, in the case under consideration it
is easily proved.

Property b) follows at once from the definition of ¢.

THEOREM 4. I we have a point sequence of topologlcal groups: 0—G' -G -+G"—0, where G' and
G"possess property T, then G possesses property T.

The proof is evident.
3. We indicate now the class of groups possessing property T.

THEOREM 5. The group SI (3, K) possesses property T when K is any locally compact field which
is not discrete.

The proof of the theorem rests on a number of lemmas. We introduce the notation:

a b x
H is a subgroup of the group Sl (3, K) of the form (c d y), G', G", S are respectively subgroups of
0 0 I

a0 b 100 1 0 x
010} 0ab>v (Oly)’
c 0d 0cd 001

S' is a subgroup of the group Sl (2, K) of the form (l x)'_

matrices of the form

01

LEMMA 1. If in a representation of Sl (3, K) we have a vector invariant relative to S, then it is in-
variant relative to S1(3, K).

Proof. The corresponding assertion for S1(2,K) and S' is proved in [2]. Therefore, the correspond-
ing vector will be invariant relative to G' and G", and they generate Sl (3, K).

COROLLARY. The restriction of any nontrivial irreducible representatlon of 81 (3,K) on H is dis-
tributed on irreducible representations of H, nontrivial on S.

LEMMA 2. In the completion in Hof a regular representation of H is contained any irreducible re-
presentation of H, nontrivial on S.

Lemma 2 is easily proved by the methods of the paper [3].
LEMMA 3. A trivial representation of H does not lie in the completion of a regular representation.

Lemma 3 follows from [2] and from the fact that the restriction of a regular representation of H on
81 (2, K) is multiply regular.

Theorem 5 follows at once from Lemmas 1-3.
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THEOREM 6. Let G be a simple algebraic group on K, containing a subgroup G' such that: a) G'
is an algebraic group possessing property T, b) G' and the maximal compact subgroup U generate G. Then
G possesses property T.

(For real and decomposable p-adic groups b) follows from a). Apparently, this is always true.)
We prove two lemmas as a preliminary.

LEMMA 4. There exists such a number N that any element from G is distributed in the product over
no greater than N elements from G' and U.

Proof. For real and decomposable p-adic groups the lemma follows at once from the decomposition
G=UAU, where A is the vector part of the mapped subgroup. (This decomposition is well-known in the
real case and for decomposable p-adic groups is proved in [4].) Since the decomposition G=UAU is obvi-
ously always correct, then we only project a proof not using this decomposition.

First it is pomted out that there exists a finite number of elements ui, ce., URS ul, . un €U such
that the subsets Gr1 uj Gu1 generate G. Then the fact that G1 and G are algebraic and the uncountablhty of
the field K are used.

LEMMA 5. Let G be a locally compact group, T(g) be its invariant representation in the space L,
and the vector X¢L be such that Re(T(g)X, X)= ¢ > 0. Then T(g) comprises a trivial representation.

Proof. It is easily seen that it is sufficient to prove the theorem for the subgroup G with a finite
number of generators, i.e.,for the case where G is a free group with generators gj, ..., gp.

Let us indicate an apparent proposition. Let there be given in a Hilbert space L the n subspaces
Ly, ..., Ln. We denote by P; the orthogonal projections on L, and by P the projection on L, NL,N...MN
Lp. Then it happens that (Py ... Py _4PnPpeg .. .P1)k——P when Kk — « in the strong operator topology.

We return to the proof of the lemma for the free group. Assume that there does not exist a vector
invariant relative to T(g;). Using only that formulated proposition, one may easily construct a sequence
of positive functions fy such that a) fn €LY(G), b) |fnl;=1, c) T(f;) strongly converges to the projection on
L; V... Lp=0. Here as always T(fn) denotes the operator > (@7 (g But from the conditions of the

g
lemma and from tk> properties a) and b) of functions f it follows that Re(T(fp) X, X)= &, and from the
property c) it follows that T(f)X—0. The contradiction is obtained and Lemma 5 is proved.

Let us return to the proof of Theorem 6. We examine the representation P ¢& in the space L, in the
completion of which lies the trivial representation G. Then there exists a sequence of vectors X, €L such
that (T(g)Xy,, Xp)—1 on any compact. We prove that (T(g)Xp, Xp)—1 uniformly in G. Then the theorem
will follow from Lemma 5.

Let us denote by L%J(LG 1) the subspace of vectors invariant relative to U(G"), and by LU(L 1) the
corresponding orthogonal complements. From the property T for U(G") it follows that the projection of
Xp on LIJ‘j(L‘(L},) -converges strongly to zero. Usingl.emma 4 and the fact that the representation is unitary,
we obtain the uniform convergence of (T(g)Xp,Xn) to unity.

Thus, in particular, it is shown that if I'C G is a discrete subgroup of a simple real group G of
rank greater than two, such that the volume of the factor-space G /Tis finite, then Hy(U \G/ I,Z)
finite and my( (U\G /1) has a finite number of generators.

LITERATURE CITED

1. J. M. G. Fell, Weak containment and induced representation of groups, Can.J. Math, 14, No. 2, 237-
268 (1962).

2. I. M. Gel'fand, M. I. Graev, and 1. I. Pyatetskii-Shapiro, Theory of Representations and Automorphic
Functions (Generalized Functions, Vol. 6) [in Russian], Nauka, Moscow (1966).

3. G. W. Mackey, Induced representation of locally compact groups. I, Ann. Math., 55, 101-139 (1952).

4, N. Iwahori and H. Matsumoto, Regular elements of semisimple algebraic groups, Publ. Math. IHES,
No. 25, 5-48 (1965).

65



