Ghent exercises

May 26, 2023

1. For a $(k+1)$-regular graph finish the proof that

$$
\operatorname{Spec}(B)=\left\{\left.\frac{\lambda \pm \sqrt{\lambda^{2}-4 k}}{2} \right\rvert\, \lambda \in \operatorname{Spec}(A)\right\} \cup\{ \pm 1\}^{|E|-|V|}
$$

2. Let $f: V \rightarrow \mathbb{R}$ with $A f=\lambda f$, and f^{t}, f^{h} as defined in the course.
(a) Show that f^{t}, f^{h} are independent iff $\lambda \neq \pm(k+1)$.
(b) Show that if $f \perp g: V \rightarrow \mathbb{C}$ then $\left\{f^{h}, f^{t}\right\} \perp\left\{g^{h}, g^{t}\right\}$. Compute the Gram matrix of f^{h}, f^{t}.
(c) Show that if $\lambda \in[-2 \sqrt{k}, 2 \sqrt{k}]$ then $\mu f^{h}-f^{t},-f^{h}+\mu f^{t}$ is an orthonormal basis for $\operatorname{Span}\left\{f^{h}, f^{t}\right\}$, up to scaling.
3. Finish the proof that for any $\varepsilon>0$, NBRW on the edges of a $k+1$-regular Ramanujan graph with n edges has L^{1} mixing time $t_{\varepsilon}<\log _{k} n+3 \log _{k} \log _{k} n$ for n large enough. (In fact, 3 can be replaced by any $\delta>2$).
4. For a prime p with $p \equiv 3(\bmod 4)$, the Paley digraph $\mathcal{P}(p)$ has $V=\mathbb{F}_{p}$ and

$$
E=\left\{a \rightarrow b \left\lvert\,\left(\frac{b-a}{p}\right)=1\right.\right\}
$$

where (\div) is the Legendre symbol. Show that $\mathcal{P}(p)$ is a $k=\frac{p-1}{2}$-regular digraph, with nontrivial eigenvalues $\frac{-1 \pm i \sqrt{p}}{2}$ (in particular, it is a Ramanujan digraph).
5. Let $G=P G L_{d}\left(\mathbb{Q}_{p}\right), I$ the Iwahori group $\left(\begin{array}{cccc}\mathbb{Z}_{p}^{\times} & \mathbb{Z}_{p} & \cdots & \mathbb{Z}_{p} \\ p \mathbb{Z}_{p} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \mathbb{Z}_{p} \\ p \mathbb{Z}_{p} & \cdots & p \mathbb{Z}_{p} & \mathbb{Z}_{p}^{\times}\end{array}\right), P$ the Borel group of upper triangular matrices in G, and $W=\operatorname{Sym}(d) \leq G$ the spherical Weyl group.
(a) Show that $G=\bigsqcup_{w \in W} P w I$.
(b) Deduce that for a character χ of $P, \operatorname{dim}\left(\operatorname{Ind} d_{P}^{G} \chi\right)^{I} \leq d$! (recall that any Iwahori spherical irreducible representation of G embeds in $\left(\operatorname{Ind}_{P}^{G} \chi\right)$ for some unramified $\left.\chi\right)$.
(c) Show that $\operatorname{dim}\left(\operatorname{Ind} d_{P}^{G} \chi\right)^{I}=d$! for unramified χ.
6. (a) Show that an r-normal, k-regular Ramanujan digraph \mathcal{D} satisfies

$$
\left\|\left.A_{\mathcal{D}}^{\ell}\right|_{\mathbf{1}^{\perp}}\right\|_{2} \leq\binom{\ell+r-1}{r-1} \sqrt{k}^{\ell+r-1}
$$

(or any bound of the form $O\left(\sqrt{k}^{\ell} \cdot \operatorname{poly}(\ell)\right)$).
(b) Deduce that an almost-normal family of Ramanujan digraphs has cutoff.
7. Show that geodesic flow in dimension $j \geq 1$ on the building of $P G L_{d}\left(\mathbb{Q}_{p}\right)$ is collision-free.
8. Show that $P G U_{2}(\mathbb{F}) \cong \mathbb{H}(\mathbb{F})^{\times} / \mathbb{F}^{\times}$(Hint: Hilbert '90).
9. Show (explicitly!) that if $\sqrt{-1} \in \mathbb{F}$ then $P G U_{d}(\mathbb{F}) \cong P G L_{d}(\mathbb{F}) \cong P U_{d}(\mathbb{F})$.
10. (a) Let Λ be a group acting on a tree T, and $S \leq \Lambda$ a symmetric generating set $\left(S^{-1}=S,\langle S\rangle=\Lambda\right)$ which takes some vertex v_{0} once to each neighbor. Show that Λ acts simply transitively on all vertices.
(b) Show this is not necessarily true in higher dimensions (and also in a tree, when S is not symmetric).

