Ghent exercises

May 26, 2023

1. For a (k+1)-regular graph finish the proof that

$$\operatorname{Spec}(B) = \left\{ \frac{\lambda \pm \sqrt{\lambda^2 - 4k}}{2} \, \middle| \, \lambda \in \operatorname{Spec}\left(A\right) \right\} \cup \left\{ \pm 1 \right\}^{|E| - |V|}.$$

- 2. Let $f: V \to \mathbb{R}$ with $Af = \lambda f$, and f^t, f^h as defined in the course.
 - (a) Show that f^t, f^h are independent iff $\lambda \neq \pm (k+1)$.
 - (b) Show that if $f \perp g: V \to \mathbb{C}$ then $\{f^h, f^t\} \perp \{g^h, g^t\}$. Compute the Gram matrix of f^h, f^t .
 - (c) Show that if $\lambda \in \left[-2\sqrt{k}, 2\sqrt{k}\right]$ then $\mu f^h f^t, -f^h + \mu f^t$ is an orthonormal basis for Span $\{f^h, f^t\}$, up to scaling.
- 3. Finish the proof that for any $\varepsilon > 0$, NBRW on the edges of a k + 1-regular Ramanujan graph with n edges has L^1 mixing time $t_{\varepsilon} < \log_k n + 3 \log_k \log_k n$ for n large enough. (In fact, 3 can be replaced by any $\delta > 2$).
- 4. For a prime p with $p \equiv 3 \pmod{4}$, the Paley digraph $\mathcal{P}(p)$ has $V = \mathbb{F}_p$ and

$$E = \left\{ a \to b \, \middle| \, \left(\frac{b-a}{p} \right) = 1 \right\},\,$$

where $\left(\frac{1}{2}\right)$ is the Legendre symbol. Show that $\mathcal{P}(p)$ is a $k = \frac{p-1}{2}$ -regular digraph, with nontrivial eigenvalues $\frac{-1\pm i\sqrt{p}}{2}$ (in particular, it is a Ramanujan digraph).

5. Let $G = PGL_d(\mathbb{Q}_p)$, I the Iwahori group $\begin{pmatrix} \mathbb{Z}_p^{\times} \ \mathbb{Z}_p & \cdots & \mathbb{Z}_p \\ p\mathbb{Z}_p & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \mathbb{Z}_p \\ p\mathbb{Z}_p & \cdots & p\mathbb{Z}_p & \mathbb{Z}_p^{\times} \end{pmatrix}$, P the Borel group of upper triangular matrices in

G, and $W = Sym(d) \le G$ the spherical Weyl group.

- (a) Show that $G = \bigsqcup_{w \in W} PwI$.
- (b) Deduce that for a character χ of P, dim $(Ind_P^G\chi)^I \leq d!$ (recall that any Iwahori spherical irreducible representation of G embeds in $(Ind_P^G\chi)$ for some unramified χ).
- (c) Show that dim $\left(Ind_{P}^{G}\chi\right)^{I} = d!$ for unramified χ .
- 6. (a) Show that an *r*-normal, *k*-regular Ramanujan digraph \mathcal{D} satisfies

$$\left\|A_{\mathcal{D}}^{\ell}\right\|_{\mathbf{1}^{\perp}}\right\|_{2} \leq \binom{\ell+r-1}{r-1}\sqrt{k}^{\ell+r-1}$$

(or any bound of the form $O\left(\sqrt{k}^{\ell} \cdot poly\left(\ell\right)\right)$).

(b) Deduce that an almost-normal family of Ramanujan digraphs has cutoff.

- 7. Show that geodesic flow in dimension $j \ge 1$ on the building of $PGL_d(\mathbb{Q}_p)$ is collision-free.
- 8. Show that $PGU_2(\mathbb{F}) \cong \mathbb{H}(\mathbb{F})^{\times} / \mathbb{F}^{\times}$ (Hint: Hilbert '90).
- 9. Show (explicitly!) that if $\sqrt{-1} \in \mathbb{F}$ then $PGU_d(\mathbb{F}) \cong PGL_d(\mathbb{F}) \cong PU_d(\mathbb{F})$.
- 10. (a) Let Λ be a group acting on a tree T, and $S \leq \Lambda$ a symmetric generating set $(S^{-1} = S, \langle S \rangle = \Lambda)$ which takes some vertex v_0 once to each neighbor. Show that Λ acts simply transitively on all vertices.
 - (b) Show this is not necessarily true in higher dimensions (and also in a tree, when S is not symmetric).