Some exercices about lattices in p-adic groups

François Thilmany

Summer school on HDX in Gent, May 2023

Exercise 1 (A tree lattice). Show that the free group F_2 of rank 2 is a cocompact lattice in $Aut(T_4)$ endowed with the compact-open topology.

Exercise 2 (Finite extension of a lattice). Let Γ be a lattice in a locally compact Hausdorff group G and let Γ' be a discrete subgroup of G containing Γ . Show that Γ' is a lattice, and deduce that the index $[\Gamma':\Gamma]$ is finite.

Exercise 3 (Connected normalizer of discrete group). Let Γ be a discrete subgroup of a Hausdorff group G. Show that $N_G(\Gamma)^\circ = C_G(\Gamma)^\circ$. (H° denotes the connected component of H containing the identity.) Deduce that if additionally Γ is normal and G is connected, then Γ is central.

Exercise 4 (Groups with lattices are unimodular). Let G be a locally compact Hausdorff group and suppose that there is a lattice Γ in G. Prove that G is unimodular, i.e. that the modulus of the action of G on any of its Haar measures is trivial.

Exercise 5 (Lattice remains so after quotient with compact kernel). Let Γ be a discrete subgroup of a locally compact Hausdorff group G and let K be a compact normal subgroup of G. Show that Γ is a lattice in G if and only if the image of Γ is a lattice in G/K.

Exercise 6 (SL₂(\mathbb{Z}) in SL₂(\mathbb{R})). Show by reducing matrices that SL₂(\mathbb{Z}) is a non-cocompact lattice in SL₂(\mathbb{R}).

Exercise 7 (SL₂(\mathbb{Z}) in SL₂(\mathbb{R}) bis). Compute the covolume of SL₂(\mathbb{Z}) in SL₂(\mathbb{R}). Compare with the estimate from the previous exercise.

Exercise 8. For which prime p is $SL_2(\mathbb{Z})$ a lattice in $SL_2(\mathbb{Q}_p)$?

Exercise 9 (An S-arithmetic lattice). Show (without using B&H-C's theorem) that $SL_2(\mathbb{Z}[p^{-1}])$ is a non-uniform lattice in $SL_2(\mathbb{R}) \times SL_2(\mathbb{Q}_p)$.

Exercise 10 (Non-cocompact lattice in tdlc group). Can a totally disconnected locally compact group admit a non-cocompact lattice?

Exercise 11 (Strong approximation for SL_n). Use the Chinese remainder theorem to prove strong approximation by hand for SL_n over \mathbb{Q} with respect to $R = \{\infty\}$.

Exercise 12 (Failure of strong approximation). Show that strong approximation fails for GL_n and PGL_n over \mathbb{Q} .

Exercise 13. Let K be a field of characteristic 0. Prove by hand that $SL_n(\mathbb{Z})$ is Zariski-dense in $SL_n(K)$.

Exercise 14 (Endomorphism algebra of lattice). Let G be a semisimple algebraic group over a local field k, and suppose G(k) has no compact factors. Let $\rho : G \to \operatorname{GL}(V)$ be an algebraic representation. Let Γ be a lattice in G(k). Prove that if a subspace W of V is stable under Γ , then it is stable under G(k). Deduce that $k\rho(\Gamma) = k\rho(G(k))$ as sub-k-algebras of $\operatorname{End}(V)$.

Exercise 15 (Centralizer of lattice is central). Let G be a semisimple algebraic group over a local field k, and let Γ be a lattice in G(k). Show that if G(k) has no compact factors, then the centralizer $C_{G(k)}(\Gamma)$ of Γ is actually central in G(k) (hence finite). Deduce that in presence of compact factors, the centralizer $C_{G(k)}(\Gamma)$ is a compact subgroup of G(k). Show in this last situation that $C_{G(k)}(\Gamma)$ need not be central (nor even normal) but could be.

Exercise 16 (Normalizer of a lattice is a lattice). Let G be a semisimple algebraic group over a local field k, and let Γ be a lattice in G(k). Suppose that G(k) is without compact factors. Prove that $N_{G(k)}(\Gamma)$ is also a lattice. In consequence, $N_{G(k)}(\Gamma)/\Gamma$ is a finite group.

Exercise 17 (Topology of *p*-adic group determined by its building). For *T* a simplicial complex, endow $\operatorname{Aut}(T)$ with the compact-open topology. Show that the *p*-adic topology on $\operatorname{PGL}_n(\mathbb{Q}_p)$ coincides with the topology induced by the inclusion of $\operatorname{PGL}_n(\mathbb{Q}_p)$ in the automorphism group $\operatorname{Aut}(T)$ of its Bruhat-Tits building *T*. Does this also hold for $\operatorname{SL}_n(\mathbb{Q}_p)$?

Exercise 18. Construct a lattice in $SL_2(\mathbb{Q}_p)$ geometrically.

Exercise 19. Construct a lattice in $SL_2(\mathbb{Q}_p)$ algebraically.

Exercise 20. Compute the covolume of the lattices constructed in the previous exercises.

Exercise 21 (Amalgam for $\operatorname{SL}_2(\mathbb{Z}[p^{-1}])$). Show that $\operatorname{SL}_2(\mathbb{Z}[p^{-1}])$ is isomorphic to the amalgamated product $\operatorname{SL}_2(\mathbb{Z}) *_I \operatorname{SL}_2(\mathbb{Z})$, where $I = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \mid a, b, d \in \mathbb{Z}, c \in p\mathbb{Z} \}$. Deduce that it is finitely generated, and compare with the additive group of $\mathbb{Z}[p^{-1}]$.

Exercise 22 (Cocompact lattices are finitely generated). Let k be a non-archimedean local field and Γ a cocompact lattice in $SL_2(k)$. Prove that Γ is finitely generated.

Exercise 23 (Ihara's theorem). Let Γ be a torsion-free, discrete subgroup of $SL_2(\mathbb{Q}_p)$. Prove that Γ is free. Deduce that lattices in $SL_2(\mathbb{Q}_p)$ are virtually free (of finite rank), hence never have property (T).