Exercices on the mini-course Ramanujan graphs

Alain VALETTE

May 5, 2023

1. Let X be a k-regular graph on n vertices, $\mu_{0} \geq \mu_{1} \geq \ldots \geq \mu_{n-1}$ its eigenvalues. Prove that

- For every i we have $\left|\mu_{i}\right| \leq k$.
- The multiplicity of k is equal to the number of connected components of X.

2. Let X be a connected k-regular graph on n vertices. Prove that X is bipartite if and only if the spectrum of X is symmetric about 0 , if and only if $\mu_{n-1}=-k$.
3. Let X be a finite graph on n vertices, with eigenvalues $\mu_{0} \geq \mu_{1} \geq \ldots \geq \mu_{n-1}$. Show that $\sum_{i=1}^{n} \mu_{i}=0$, that $\sum_{i=1}^{n} \mu_{i}^{2}$ is twice the number of edges, and that $\sum_{i=1}^{n} \mu_{i}^{3}$ is 6 times the number of triangles in X.
4. Let $X=(V, E)$ be a finite, connected, k-regular graph. Choose an orientation on X so that each edge e has an origin e^{-}and an extremity e^{+}. For every $x \in V, e \in E$, define

$$
\delta(x, e)=\left\{\begin{array}{ccc}
1 & \text { if } & x=e^{+} \\
-1 & \text { if } & x=e^{-} \\
0 & \text { otherwise } &
\end{array}\right.
$$

Define $d: \mathbb{R}^{V} \rightarrow \mathbb{R}^{E}: f \mapsto d f$ with $d f(e)=\sum_{x \in V} \delta(x, e) f(x)$, and $d^{*}:$ $\mathbb{R}^{E} \rightarrow \mathbb{R}^{V}: g \mapsto d^{*} g$ with $d^{*} g(x)=\sum_{e \in E} \delta(x, e) g(e)$. Check that d, d^{*} are adjoint of each other with respect to natural scalar products. Prove that $d^{*} d=\Delta$, where Δ is the combinatorial Laplace operator given by $\Delta=k \cdot I d-A$.
5. The girth of a connected graph X is the length $g(X)$ of its shortest circuit. Let X be a finite, connected, k-regular graph. Observing that, for $r<\frac{g(X)}{2}$, any ball of radius r in X is isomorphic (as a graph) to a ball of radius r in the k-regular tree T_{k}, deduce the Moore bound:

$$
g(X) \leq(2+o(1)) \log _{k-1}|X|
$$

(where $o(1)$ is a quantity that goes to 0 as $|X| \rightarrow+\infty$).
6. (link with Indira Chatterji's course on Kazhdan's property (T$)$) Let Γ be countable group with Kathdan's property (T), let S be a finite symmetric generating set of Γ. Let $\left(\Gamma_{n}\right)_{n>0}$ be a family of finite quotients of Γ, with $\left|\Gamma / \Gamma_{n}\right| \rightarrow+\infty$. Show that the family of Cayley graphs $X_{n}=\mathcal{G}\left(\Gamma / \Gamma_{n}, S\right)$ is a family of expanders. For $F \subset X_{n}$, you may consider e.g. applying the Laplace operator to the function f_{F} defined by

$$
f_{F}(x)=\left\{\begin{array}{ccc}
\left|X_{n} \backslash F\right| & \text { if } & x \in F \\
-|F| & \text { if } & x \notin F
\end{array}\right.
$$

7. A subset F in a finite graph X is independent if $A_{x y}=0$ for every $x, y \in F$. The independence number $i(X)$ is the cardinality of the largest independent set. The chromatic number $\chi(X)$ is the minimal number of colors necessary to paint the vertices of X so that two adjacent vertices do not have the same color (so that X is bipartite iff $\chi(X)=2$). Observe that the set of vertices of a given color in a coloring, is independent; deduce that $|X| \leq i(X) \chi(X)$.
8. Let X be a finite, connected, k-regular graph on n vertices. Prove that $i(X) \leq \frac{n}{k} \max \left\{\left|\mu_{1}\right|,\left|\mu_{n-1}\right|\right\}$. (Hint: take F a maximal independent subset, apply A to the function f_{F} in exercise 6). Deduce that, if X is Ramanujan non bipartite, then $\chi(X) \geq \frac{k}{2 \sqrt{k-1}}$.
