Local representation theory and Hecke algebras I

Anne-Marie Aubert

Institut de Mathématiques de Jussieu – Paris Rive Gauche C.N.R.S., Sorbonne Université and Université Paris Cité

Summer School on High-dimensional Expanders Ghent University — May 22-26, 2023

A *Hilbert space* is an inner product space (H, \langle , \rangle) that is complete with respect to the norm defined by the inner product:

$$||x|| := \sqrt{\langle x, x \rangle}$$
 for $x \in H$.

Recollection

A sequence of vectors (x_n) in a normed vector space is called a *Cauchy* sequence if for every $\epsilon > 0$ there exists a number M such that $||x_m - x_n|| < \epsilon$ for all m, n > M. A vector space is said to be *complete* if every Cauchy sequence converges.

Definition

A Hilbert space is called *separable* if it has a countable orthonormal basis

Let H_1 , H_2 , ... be separable Hilbert spaces. Their Hilbert sum

$$H = \widehat{\bigoplus}_n H_n$$

is the Hilbert space obtained by completing $\bigoplus_n H_n$ with respect to the hermitian product

$$\langle (x_n)_n, (y_n)_n \rangle := \sum_n \langle x_n, y_n \rangle.$$

Concretely, *H* is the space of sequences $(x_n)_n$ with $x_n \in H_n$ and $\sum_n ||x_n||^2 < \infty$ (with the hermitian product above).

An *operator* on an Hilbert space H is a continuous linear map $T: H \rightarrow H$.

Definition

A linear operator $T: H \to H$ is called *bounded* if its domain is all H and if there exists a constant c such that $||T(v)|| \le c ||x||$ for $x \in H$. In this case the smallest c is called the *operator norm* of T and is denoted ||T||.

Definition

Any operator T has an *adjoint operator* T^* , characterized by

$$\langle Tx, y \rangle = \langle x, T^*y \rangle$$
 for $x, y \in H$.

A bounded operator is called *self-adjoint* (or *symmetric*) if $T^* = T$.

We call x an *eigenvector* of T with *eigenvalue* λ if $x \neq 0$ and $T(x) = \lambda x$. Given λ , the set of eigenvectors with eigenvalue λ is called the λ -*eigenspace*.

Remark

If T is a self-adjoint bounded operator, then its eigenvalues are real and the eigenspaces corresponding to distinct eigenvalues are orthogonal.

Definition

An operator $T: H \to H$ is called *compact* if whenever (x_i) is a bounded sequence in H then its image $T(x_i)$ has a convergent subsequence in H.

Properties of self-adjoint operators

• Let T be a self-adjoint operator on H. Then

$$||T|| = \sup_{||x||=1} |\langle T(x), x \rangle|,$$

where ||T|| is the operator norm of T.

• Either ||T|| or -||T||, or possibly both, are eigenvalues of T.

Theorem 1 [Spectral theorem for compact self-adjoint operators]

Let T be a compact self-adjoint operator on a separable Hilbert space H. Then H has an orthonormal basis e_i (i = 1, 2, 3, ...) of eigenvectors of T, so that $T(e_i) = \lambda_i e_i$. The eigenvalues $\lambda_i \to 0$ as $i \to \infty$.

An operator $T: H \rightarrow H$ is called *Hilbert-Schmidt* if H has an orthonormal basis $(e_i)_i$ such that

$$\sum_{i} \|\mathcal{T}(e_i)\|^2 < \infty.$$
(1)

Proposition 1

Every Hilbert-Schmidt operator is compact.

Proof

Let $T: H \to H$ be a Hilbert-Schmidt operator, and let $(e_i)_i$ be an orthonormal basis of H satisfying (1). For $n \ge 1$, define the *n*-truncation T_n of T as follows:

$$\mathcal{T}_n(e_i) := egin{cases} \mathcal{T}(e_i) & ext{if } 1 \leq i \leq n, \ 0 & ext{otherwise.} \end{cases}$$

Let $x = \sum_{i=1}^{\infty} a_i e_i \in H$ such that ||x|| = 1. We have

$$T_n(x) = T_n(\sum_{i=1}^{\infty} a_i e_i) = \sum_{i=1}^{n} a_i T(e_i)$$

and T_n is a finite rank operator because its image is spanned by the finite set of vectors $T(e_1), \ldots, T(e_n)$.

Hilbert-Schmidt operators III

We claim that $||T - T_n|| \rightarrow 0$. Indeed by linearity and definition of T_n :

$$(T-T_n)(\sum_{i=1}^{\infty}a_ie_i)=\sum_{i=n+1}^{\infty}a_i\ T(e_i).$$

Thus

$$\begin{split} \|(T - T_n)(\sum_{i=1}^{\infty} a_i e_i)\| &= \|\sum_{i=n+1}^{\infty} a_i T(e_i)\| \le \sum_{i=n+1}^{\infty} |a_i| \|T(e_i)\| \\ &\le \left(\sum_{i=n+1}^{\infty} |a_i|^2\right)^{1/2} \cdot \left(\sum_{i=n+1}^{\infty} \|T(e_i)\|^2\right)^{1/2} \\ &\le \|\sum_{i=1}^{\infty} a_i e_i\| \cdot \left(\sum_{i=n+1}^{\infty} \|T(e_i)\|^2\right)^{1/2} \le \left(\sum_{i=1}^{\infty} \|T(e_i)\|^2\right)^{1/2} < +\infty. \end{split}$$

Thus $||T - T_n|| \le \left(\sum_{i=1}^{\infty} ||T(e_i)||^2\right)^{1/2} < +\infty$. Hence $||T - T_n|| \to 0$, and T is compact as a limit of compact operators.

Anne-Marie Aubert

For (X, μ) a measure space, let $L^2(X, \mu)$ denote the space of all complex-valued functions on X which are square summable with respect to μ_X .

Theorem 2

If $H = L^2(X, \mu)$ is separable, and if $K \in L^2(X \times X, \mu \times \mu)$ then the operator defined by

$$T_{\mathcal{K}}(f)(x) := \int_{X} \mathcal{K}(x, y) f(y) d\mu(y)$$
(2)

is Hilbert-Schmidt.

A representation (π, V) of a group or an associative algebra A (also called a left A-module) is a vector space V equipped with a homomorphism $\pi: A \to \text{End}(V)$, i.e., a linear map preserving the multiplication and unit.

If V_1 , V_2 are two representations of A then the direct sum $V_1 \oplus V_2$ has an obvious structure of a representation of A.

Definition

- A subrepresentation of a representation (π, V) is a subspace U ⊂ V which is invariant under all operators π(a), a ∈ A.
- A nonzero representation (π, V) is said to be *irreducible* if its only subrepresentations are 0 and V itself, and *indecomposable* if it cannot be written as a direct sum of two nonzero subrepresentations.

Let (π₁, V₁), (π₂, V₂) be two representations of an algebra A. A homomorphism (or intertwining operator) φ: V₁ → V₂ is a linear operator which commutes with the action of A, i.e.,

$$\phi(\pi_1(a)v) = \pi_2(a)\phi(v)$$
 for any $v \in V_1$.

- A homomorphism ϕ is said to be an *isomorphism of representations* if it is an isomorphism of vector spaces.
- The set (space) of all homomorphisms of representations $V_1 \rightarrow V_2$ is denoted by $\operatorname{Hom}_A(V_1, V_2)$.
- Two representations between which there exists an isomorphism are said to be isomorphic.

Schur's lemma

Let V_1 , V_2 be representations of an algebra A over any field C (which need not be algebraically closed). Let $\phi: V_1 \to V_2$ be a nonzero homomorphism of representations. Then:

- If V_1 is irreducible, ϕ is injective;
- **2** If V_2 is irreducible, ϕ is surjective.

Thus, if both V_1 and V_2 are irreducible, then ϕ is an isomorphism.

Proof

- The kernel U₁ of φ is a subrepresentation of V₁. Since φ ≠ 0, this subrepresentation cannot be V₁. So by irreducibility of V₁ we have U₁ = 0.
- O The image U₂ of φ is a subrepresentation of V₂. Since φ ≠ 0, this subrepresentation cannot be 0. So by irreducibility of V₂ we have U₂ = V₂.

Schur's lemma for algebraically closed fields

Let V be a finite dimensional irreducible representation of an algebra A over an algebraically closed field k, and $\phi: V \to V$ is an intertwining operator. Then $\phi = \lambda I$ for some $\lambda \in k$ (a scalar operator).

Proof

Let λ be an eigenvalue of ϕ (a root of the characteristic polynomial of ϕ). It exists since k is an algebraically closed field. Then the operator $\phi - \lambda I$ is an intertwining operator $V \rightarrow V$, which is not an isomorphism (since its determinant is zero). Thus by Schur's lemma this operator is zero, hence the result.

One major goal of the theory of unitary representations is to decompose a unitary representation into simpler pieces. To understand the decomposition of representations into smaller pieces, we also need infinite "direct sums" of representations, hence the concept of a direct sum of Hilbert spaces. Defition

A unitary representation of a group G is a homomorphism

 $\pi\colon G\to \mathrm{U}(H)$

to the unitary group $U(H) := \{g \in GL(H) : g^* = g^{-1}\}$ of a complex Hilbert space H.

Definition

A unitary representation (π, H) of G has a discrete decomposition if there are irreducible unitary subrepresentations (π_n, H_n) such that $H = \widehat{\bigoplus}_n H_n$, and each occurs with finite multiplicity.

If G is a locally compact group, then G carries both a left and a right Haar measure. These are positive regular measures which are invariant under left and right translation, respectively, and are unique up to positive scalar multiples. The group G is called *unimodular* if the left Haar measure is also a right Haar measure.

Let G be a locally compact (and countable at infinity), unimodular group (with Haar measure denoted μ). A cocompact lattice in G is a discrete subgroup Γ such that $\Gamma \setminus G$ is compact.

Let Γ be a cocompact lattice in G. Then μ induces a measure μ_X on $X := G/\Gamma$ which is left G-invariant.

We define the *leftt quasi-regular representation* of G, in the space $H := L^2(X, \mu)$, by

$$\lambda_g f(x) := f(g^{-1}x), \quad x \in X, \ g \in G, \ f \in L^2(X, \mu).$$
 (3)

Notation

For $f \in C_c(G)$, let T_f be the operator

$$T_f: h \mapsto f \cdot h \quad \text{where} \quad f \cdot h: x \mapsto \int_G f(g)h(g^{-1}x)dg.$$
 (4)

Let
$$K_f(x, y) := \int_{\Gamma} f(x\gamma y^{-1}) d\gamma$$
. We have
 $T_f(h)(x) = \int_{G} f(xg'^{-1})h(g')dg' = \int_X K_f(x, y)h(y)dy.$

Theorem 2

If (π, H) is a unitary representation of G such that T_f is a compact operator on H for all $f \in C_c(G)$, then H has a discrete decomposition.

Proof (sketch)

The main step is to show that any nonzero subrepresentation
 (π', V') of (π, H) contains an irreducible subrepresentation. For this,
 we pick f ∈ C_c(G) such that T := T_f|_{V'} is nonzero and self-adjoint.
 As T is also compact, it has a non-zero eigenvalue λ. Among stable
 subspaces W of V' for which W[λ] := ker(T - λ) ≠ {0}, we pick
 one that minimises dim W[λ], and pick w₁ ∈ W[λ] such that w₁ ≠ 0.

- We claim that $W_1 := \operatorname{Span}(G \cdot w_1)$ is irreducible. If not, we have $W_1 = U_1 \oplus U_2$, orthogonal sum of non-zero subrepresentations. Then U_1, U_2 are stable under T and $W_1[\lambda] = U_1[\lambda] \oplus U_2[\lambda]$. By minimality of W one of the $U_i[\lambda]$'s is $\{0\}$, say $U_2[\lambda]$. Hence $w_1 \in U_1$, but then $W_1 \subset U_1$ and $U_2 = \{0\}$, a contradiction.
- Next we show that *H* is a Hilbert direct sum of irreducible subrepresentations. A set of irreducible and pairwise orthogonal subrepresentations of *H* is called an orthogonal family. One checks that there is a maximal orthogonal family *A*.
- The orthogonal Y of ∑_{τ∈A} τ (equivalently of ⊕_{τ∈A}τ) is a subrepresentation containing no irreducible subrepresentation (by maximality of A), thus by the first step Y = 0 and H = ⊕_{τ∈A}τ.
- Finally, we check that multiplicities are finite. Say τ_1, \ldots, τ_n are irreducible, pairwise isomorphic, and all appear in H. Pick $f \in C_c(G)$ such that T_f is self-adjoint and nonzero on τ_1 , and pick a nonzero eigenvalue λ of T_f on τ_1 . The eigenspaces $\tau_i[\lambda]$ are all isomorphic to $\tau_1[\lambda]$ (as $\tau_i \simeq \tau_1$), in particular nonzero, and are in direct sum inside $H[\lambda]$, thus $n \leq \dim H[\lambda] < \infty$ (as T_f is compact).

Theorem 3

Let G be a unimodular, locally compact group and let Γ be a unimodular closed subgroup (e.g. a lattice) such that $X := G/\Gamma$ is compact. Then $L^2(X)$ with the natural unitary action of G (by left translation) has a discrete decomposition.

Proof

Indeed, we have already seen that the operator T_f is Hilbert-Schmidt on $L^2(X)$, thus it is compact by Proposition 1, so Theorem 2 applies.