Local representation theory and Hecke algebras II

Anne-Marie Aubert

Institut de Mathématiques de Jussieu – Paris Rive Gauche C.N.R.S., Sorbonne Université and Université Paris Cité

Summer School on High-dimensional Expanders Ghent University — May 22-26, 2023

Notation

- F: non-archimedean local field (i.e. a finite extension of \mathbb{Q}_p or $\mathbb{F}_p((\mathcal{T}))$)
- G: F-rational points of a connected reductive algebraic group G defined over F (examples: SL_n(F), GL_n(F), Sp_{2n}(F))
- (π, V) : representation of G.

Definition

A vector $v \in V$ is called *smooth*, if the isotropy group of v is an open subgroup of G.

The set V_{∞} of smooth vectors forms a vector subspace of V, which is stable under G. In this way, one gets a G-module $(\pi_{\infty}, V_{\infty})$.

Smooth representations of *p*-adic groups II

Let (π, V) be a representation of G. The dual space V^* of V is equipped with the representation π^* of G defined by

$$\pi^*(g)\cdot v^*(v):=v^*(\pi(g^{-1})\cdot v),\quad \text{for }v^*\in V^* \text{ and }v\in V. \tag{1}$$

Matrix coefficients of a representation

For every $v \in V$ and $v^* \in V^*$, the matrix coefficient of (π, V) is the function $c_{v,v^*} : G \to \mathbb{C}$ defined by

$$c_{\mathbf{v},\mathbf{v}^*}(g) := \langle \mathbf{v},\pi^*(g)\mathbf{v}^* \rangle.$$

Contragredient representation

If (π, V) is smooth, the representation (π^*, V^*) is not necessarily smooth. Let \widetilde{V} denote the smooth part of V^* , it is stable under the action of G. We denote by $(\widetilde{\pi}, \widetilde{V})$ the restriction of π^* to \widetilde{V} : it is a smooth representation of G, called the *contragredient representation* of (π, V) .

Remark

Smoothness is preserved by surjective morphisms and by the operation of taking subrepresentations, subquotients, direct sums.

Induction

Let H be a closed subgroup of G and let (τ, V_{τ}) be a smooth representation of H. Let $\operatorname{Ind}_{H}^{G}(V_{\tau})$ denote the space of functions $f: G \to V_{\tau}$ such that

- (1) for all $h \in H$ and $g \in G$, we have $f(hg) = \tau(h)f(g)$;
- (2) there exists an open subgroup K_f of G such that for all $k \in K_f$ and $g \in G$, we have f(gk) = f(g).

The space $\operatorname{Ind}_{H}^{G}(V_{\tau})$ is stable under right translations by elements of G and condition (2) is the required smoothness condition, hence the representation $(\operatorname{Ind}_{H}^{G}\tau, \operatorname{Ind}_{H}^{G}V_{\tau})$ of G is smooth and called the representation (smoothly) induced by τ .

Compact induction

The subspace $c-\operatorname{Ind}_{H}^{G}(V_{\tau})$ of $\operatorname{Ind}_{H}^{G}(V_{\tau})$ of functions with compact support modulo H (that is, the support is contained in some $H\Omega$ where Ω is a compact set in G) is G-stable and provides a subrepresentation $(c-\operatorname{Ind}_{H}^{G}(\tau), c-\operatorname{Ind}_{H}^{G}(V_{\tau}))$ of G called the representation *compactly induced* by τ .

Remark

The two representations $c-\operatorname{Ind}_{H}^{G}(V_{\tau})$ and $\operatorname{Ind}_{H}^{G}(V_{\tau})$ coincide when the quotient space G/H is compact.

Let $\mathfrak{R}(G)$ denote the category of all smooth complex representations of G. This is an abelian category admitting arbitrary coproducts.

Definition

- An *F*-subgroup **P** of **G** is called a *parabolic subgroup* if the quotient variety **G**/**P** is complete.
- If **B** is a parabolic subgroup of **G** which is solvable, then **B** is called a *Borel subgroup* of **G**.

Levi decomposition

Let \mathbf{P} be a parabolic subgroup of \mathbf{G} .

- The set of all closed connected normal unipotent subgroups of **P** has a unique maximal element **U** called the *unipotent radical* of *P*.
- There exists a reductive subgroup L of G, called a *Levi factor* of P, such that L normalizes U and $P = L \ltimes U$.

Smooth representations of *p*-adic groups VI

- Let **P** be an *F*-parabolic subgroup **P** of **G**.
- Let P denote the group of F-rational points of P.
- The unipotent radical **U** of **P** is *F*-rational. The group *U* of *F*-rational points of **U** is called the unipotent radical of *P*.
- The group P decomposes as a semidirect product P = L K U, where the group L (called a Levi factor of P) is the group of F-rational points of L.
- We have a canonical isomorphism $L \simeq P/U$ obtained by composing the injection $L \hookrightarrow P$ with quotient map $P \to P/U$.
- Then P is a closed subgroup of G with a compact quotient G/P and we can induce representations from P to G. In this case there is no difference between smooth induction and compact induction.

Parabolic induction

Let $P = LU \supset B$ be a parabolic subgroup of G. Let \overline{U} be the unipotent radical opposite to U and write $\overline{P} := L\overline{U}$. Let **P** be an *F*-parabolic subgroup of **G**. We define the *modulus character* δ_P of *P* by

$$\int_{P} f(p^{-1}p'p)\mu_{P}(p') = \delta_{P}(p) \int_{P} f(p')\mu_{P}(p'), \quad \text{for any } p \in P, \qquad (2)$$

where μ_P is a Haar measure on P.

If σ is any representation of L, we may extend it in a trivial way to a representation $\sigma_P := \inf_{L}^{P}(\sigma)$ of P by setting

$$\sigma_P(lu) := \sigma(t)$$
 for any $l \in T$ and $u \in U$.

The normality of U implies that σ_P is well-defined.

Smooth representations of *p*-adic groups VIII

Definition

The parabolic induction functor is the following composition

$$i_{L,P}^{G}: \mathfrak{R}(L) \xrightarrow{\inf_{L}^{P}} \mathfrak{R}(P) \xrightarrow{\operatorname{Ind}_{P}^{G}} \mathfrak{R}(G).$$
 (3)

Parabolic restriction

Since U is normal in P , for any smooth representation (τ, V_{τ}) of P the space

$$V(U) := \langle \pi(u)v - v : v \in V, u \in U \rangle$$

is stable under P and $V_U := V/V(U)$ provides a smooth representation of P that is trivial on U, hence a smooth representation of L. The parabolic restriction functor, or Jacquet (restriction) functor, is the following composition

$$\mathbf{r}_{L,P}^{G}\colon \mathfrak{R}(G) \xrightarrow{\operatorname{Res}_{P}^{G}} \mathfrak{R}(P) \xrightarrow{U\text{-coinvariants}} \mathfrak{R}(L).$$
(4)

Smooth representations of *p*-adic groups IX

Proposition

Let P = LU be a parabolic subgroup of G. Then the functors $i_{L,P}^{G}$ and $r_{L,P}^{G}$ are both exact, and $r_{L,P}^{G}$ is the left adjoint of $i_{L,P}^{G}$.

Theorem [Bernstein]

The right adjoint of $i_{L,P}^{G}$ is the functor $r_{L,\overline{P}}^{G}$, where \overline{P} denotes the opposite parabolic subgroup of P.

Definition

The set of all irreducible representations of G which are subquotients of $i_{T,B}^G(\chi)$, with B a Borel subgroup of G and χ of character of a torus $T \subset B$ is called the *principal series* of representations of G.

Definition

A smooth representation π of G is supercuspidal if $r_{L,P}^{G}(\pi) = 0$, for any proper parabolic subgroup P of G.

Proposition

Let π be a smooth representation of ${\it G}.$ The following conditions are equivalent

- (1) the representation π is supercuspidal;
- (2) the representation π not a subquotient of any proper parabolically induced representation.
- (3) every matrix coefficient of π has compact modulo center support.

Smooth representations of *p*-adic groups XI

Theorem [Harish-Chandra]

Any smooth irreducible π of G occurs as an irreducible component of a parabolically induced representation $i_{L,P}^{G}(\sigma)$, where P is a parabolic subgroup of G with Levi factor L and $\sigma \in Irr(L)$ is supercuspidal. The G-conjugacy class $(L, \sigma)_{G}$ of (L, σ) is uniquely determined and is called the supercuspidal support of π , it is denoted by $Sc(\pi)$.

Definition

Let L be a Levi subgroup of a parabolic subgroup P of G. A character $\chi: L \to \mathbb{C}^{\times}$ is *unramified* if χ is trivial on every compact subgroup of L. Let $\mathfrak{X}_{nr}(L)$ denote the group of unramified characters of L.

Let σ be an irreducible supercuspidal smooth representation of L and \mathcal{O} the set of equivalence classes of representations L of the form $\sigma \otimes \chi$, with $\chi \in X_{nr}(L)$. We write $\mathfrak{s} := (L, \mathcal{O})_G$ for the G-conjugacy class of the pair (L, \mathcal{O}) and $\mathfrak{B}(G)$ for the set of such classes \mathfrak{s} . We set $\mathfrak{s}_L := (L, \mathcal{O})_L$.

We denote by $\mathfrak{R}^{\mathfrak{s}}(G)$ the full subcategory of $\mathfrak{R}(G)$ whose objects are the representations (π, V) such that every *G*-subquotient of π is equivalent to a subquotient of a parabolically induced representation $i_{L,P}^{G}(\sigma')$, where $\sigma' \in \mathcal{O}$.

Theorem [Bernstein]

The categories $\mathfrak{R}^{\mathfrak{s}}(G)$ are indecomposable and split the full smooth category $\mathfrak{R}(G)$ in a direct product:

$$\mathfrak{R}(G) = \prod_{\mathfrak{s}\in\mathfrak{B}(G)}\mathfrak{R}^{\mathfrak{s}}(G).$$
(5)

Let $\operatorname{Irr}^{\mathfrak{s}}(G)$ denote the set of irreducible objects of the categoty $\mathfrak{R}^{\mathfrak{s}}(G)$. As a direct consequence of the decomposition above, we have

$$\operatorname{Irr}(G) = \prod_{\mathfrak{s} \in \mathfrak{B}(G)} \operatorname{Irr}^{\mathfrak{s}}(G).$$
(6)

Let $\mathfrak{s} = [L, \sigma]_G \in \mathfrak{B}(G)$. We denote by L^1 the intersection of kernels of unramified characters of L. Let (σ_1, V_1) be an irreducible component of the restriction of σ to L^1 . The isomorphism class of

$$\Pi^{\mathfrak{s}_{L}} := c - \operatorname{Ind}_{L^{1}}^{L}(\sigma_{1}, V_{1})$$
(7)

is independent of the choice of (σ_1, V_1) .

Theorem [Bernstein]

The functor $V \mapsto \operatorname{Hom}_{G}(\Pi^{\mathfrak{s}}, V)$ is an equivalence from $\mathfrak{R}^{\mathfrak{s}}(G)$ to the algebra $\mathcal{H}^{\mathfrak{s}}(G) := \operatorname{End}_{G}(\Pi^{\mathfrak{s}}).$

Theory of types

We fix a Haar measure on G. Let $\mathcal{H}(G)$ be the set of complex-valued, locally constant, compactly supported functions f on G. This is an algebra with respect to convolution

$$f_1 * f_2(g) := \int_G f_1(x) f_2(x^{-1}g) dx.$$
(8)

Smooth representations of *p*-adic groups XV

Let (λ, V_{λ}) be a smooth representation of a compact open subgroup J of G, and let $(\tilde{\lambda}, V_{\tilde{\lambda}})$ denote its contragredient. We define $\mathcal{H}(G, \lambda)$ to be the space of compactly supported functions $f: G \to \operatorname{End}_G(V_{\tilde{\lambda}})$ such that

$$f(jgj') = \tilde{\lambda}(j)f(g)\tilde{\lambda}(k'), \quad ext{where } j, j' \in K ext{ and } g \in G.$$
 (9)

The convolution product gives $\mathcal{H}(G, \lambda)$ the structure of a unitary associative \mathbb{C} -algebra.

Let $e_{\lambda} \in \mathcal{H}(G)$ be the function defined by

$$e_\lambda(g) := egin{cases} rac{\dim\lambda}{\mu(J)} \mathrm{tr}(\lambda(g^{-1})) & ext{if } g \in J, \ 0 & ext{if } g \in G, \ g
otin J. \end{cases}$$

Then e_{λ} is idempotent, and $e_{\lambda} \star \mathcal{H}(G) \star e_{\lambda}$ is a sub-algebra of $\mathcal{H}(G)$ with unit e_{λ} .

Bushnell and Kutzko defined a canonical isomorphism:

$$\mathcal{H}(G,\lambda)\otimes_{\mathbb{C}} \operatorname{End}_{\mathbb{C}}(V_{\lambda}) \to e_{\lambda}\star\mathcal{H}(G)\star e_{\lambda}.$$

The algebras $\mathcal{H}(G, \lambda)$ and $e_{\lambda} \star \mathcal{H}(G) \star e_{\lambda}$ are therefore canonically Morita equivalent. Hence, we get an equivalence of categories:

$$\mathcal{H}(G,\lambda) - \mathrm{Mod} \approx e_{\lambda} \star \mathcal{H}(G) \star e_{\lambda} - \mathrm{Mod}.$$
(10)

We write $\mathfrak{R}_{\lambda}(G)$ for the full sub-category of $\mathfrak{R}(G)$ whose objects are those V satisfying $V = \mathcal{H}(G) \star e_{\lambda} \star V$, that is, $\mathfrak{R}_{\lambda}(G)$ is generated over G by the subspace $e_{\lambda} \star V$.

Definition

Let \mathfrak{S} be a finite subset of $\mathfrak{B}(G)$. A pair (J, λ) is an \mathfrak{S} -type for G if the following property is satisfied

 λ occurs in the restriction of $\pi \in Irr(G)$ if and only if $\pi \in \mathfrak{S}$. (11)

If $\mathfrak S$ has only one element $\mathfrak s,$ we then refer to an $\mathfrak s$ -type, rather than an $\{\mathfrak s\}\text{-type}.$

Example

The pair (I, 1), where I is an Iwahori subgroup of G and 1 the trivial representation of I, is an s-type for $s = [T, 1]_G$, where T is a the group of F-points of a split torus and 1 the trivial representation of T.

Theorem [Bushnell-Kutzko]

Let \mathfrak{S} be a finite subset of $\mathfrak{B}(G)$. If (J, λ) is an \mathfrak{S} -type for G, then

$$\mathfrak{R}_{\lambda}(G) = \prod_{\mathfrak{s}\in\mathfrak{S}}\mathfrak{R}^{\mathfrak{s}}(G),$$
 (12)

as a product of subcategories.

In particular, if (J, λ) is an s-type for G, then we have $\mathfrak{R}_{\lambda}(G) = \mathfrak{R}^{\mathfrak{s}}(G)$, and the latter is equivalent to the category of modules of $\mathcal{H}(G, \lambda)$.

Consequence

In order to understand the category $\mathfrak{R}(G)$, we are reduced to study the categories of modules of the algebras $\mathcal{H}^{\mathfrak{s}}(G)$ (point of view of the spherical building of G) or $\mathcal{H}(G, \lambda)$ (point of view of the affine building of G). So we need to understand the structure of these algebras.

Definition

Let K be a compact open subgroup of G. We denote by $\mathcal{H}(G, K)$ the unital algebra $e_{K}\mathcal{H}(G)e_{K}$, where $e_{K} := \operatorname{vol}(K)^{-1}\mathbf{1}_{K}$, consisting of compactly supported bi-K-invariant locally constant functions on G.

Proposition

Let $G = GL_n(F)$ and $K_0 := GL_n(\mathfrak{o}_F)$, where \mathfrak{o}_F is the ring of integers of F. The spherical Hecke algebra $\mathcal{H}(G, K_0)$ is commutative.

Definition

A smooth representation π of G is said to be *spherical* (or *unramified*) if $\pi^{K_0} \neq 0$.

Corollary

Irreducible unramified representations of $G = \operatorname{GL}_n(F)$ correspond bijectively with algebra homomorphisms $\operatorname{Hom}_{\mathbb{C}\operatorname{-alg}}(\mathcal{H}(G, K_0), \mathbb{C})$.

Proof

We use the fact that, for any open compact subgroup K, the map $V \mapsto V^K$ is a bijection between irreducible smooth representations (π, V) such that $\pi^K \neq 0$ and simple $\mathcal{H}(G, K)$ -modules. Since $\mathcal{H}(G, K_0)$ is commutative, its simple modules are one-dimensional.

Definition

An irreducible representation (π, V) of G is said to have *depth zero* if $V^{G_{x,0^+}} \neq \{0\}$ for some point x of the Bruhat-Tits building of G, where $G_{x,0^+}$ is the pro-p unipotent radical of the parahoric subgroup $G_{x,0}$.

Remark

Every irreducible Iwahori-spherical representation has depth zero.

Theorem [Morris, Moy-Prasad]

Let π be an irreducible depth-zero supercuspidal representation of G. Then there exists a maximal parahoric subgroup $G_{x,0}$ such that π is compactly induced from a representation ρ of the normalizer of $G_{x,0}$ in Gsuch that the restriction of ρ to $G_{x,0+}$ is 1-isotypic.

Example

Let τ be an irreducible cuspidal representation of $\operatorname{GL}_N(\mathbb{F}_q)$, let $\tilde{\tau}$ be the inflation of τ to the maximal compact subgroup K_0 of $\operatorname{GL}_n(F)$. We have $K_0 = G_{x,0}$, where x is a vertex in the Bruhat-Tits building of $\operatorname{GL}_n(F)$. The normalizer of K_0 in G is the group $F^{\times}K_0$. Let τ denote the extension to $F^{\times}K_0$ of τ . The representation $\operatorname{c-Ind}_{F^{\times}K_0}^{\operatorname{GL}_n(F)}\tau$ is an irreducible depth-zero supercuspidal representation of $\operatorname{GL}_n(F)$.

Definition

A Coxeter group W is a group generated by a set S of elements of order 2, which has a presentation

$$W = \langle S : (ss')^{m(s,s')} = 1 \text{ for all } s, s' \in S \rangle,$$

where $m(s, s') \in \mathbb{Z}_{\geq 1}$ is the order of ss' in W.

The equalities $s^2 = 1$ (for $s \in S$) are called the *quadratic relations*, while the equalities $(ss')^{m(s,s')} = 1$, or equivalently

$$\underbrace{ss'ss'\cdots}_{n(s,s') \text{ terms}} = \underbrace{s'ss's\cdots}_{m(s,s') \text{ terms}}$$
(13)

are called the braid relations.

Examples of finite Coxeter groups

• $W = S_n$, with $S = \{(12), (23), ..., (n-1n)\}$, symmetric group, type A_{n-1} ;

② $W = S_n \ltimes \{\pm 1\}^n$, with $S = \{(12), (23), ..., (n - 1n), (id, (1, ..., 1, -1))\}$, hyperoctahedral group, type B_n or C_n.

Let (W, S) be a Coxeter group. Given $w \in W$ we denote by $\ell(w)$ its word length with respect to the generating set S. A word w with letters in S is called *reduced* if it has $\ell(w)$ many letters.

Proposition

Let (W, S) be a Coxeter group, equipped with a function $q: s \mapsto q_s$ from S to $\mathbb C$ satisfying

$$q_s = q_{s'}$$
 if s and s' are conjugate under W. (14)

There is a unique algebra structure $\mathcal{H}(W, q)$ on the \mathbb{C} -vector space spanned by elements T_w ($w \in W$) such that

(1)
$$T_1 = 1$$

(2)
$$(T_s - q_s)(T_s + 1) = 0$$
 for any $s \in S$ (quadratic relations),

(3) $T_s T_{s'} T_s \cdots = T_{s'} T_s T_{s'} \cdots$ where both sides have $m_{s,s'}$ elements (braid relations),

(3)
$$T_{ww'} = T_w T_{w'}$$
 if $\ell(ww') = \ell(w) + \ell(w')$.

The algebra $\mathcal{H}(W, q)$ is called the Hecke-Iwahori algebra of (W, q).

Bruhat-Iwahori decomposition of G

Suppose that G is F-split. Let $W := N_G(T)/T(\mathfrak{o}_F)$. Assume for today that W is a Coxeter group. We have

$$W \longrightarrow I \setminus G/I$$
 (15)

assigning to $w \in W$ its Bruhat cell IwI.

Notation

Let $\mathbf{1}_E$ denote the characteristic function of a subset E of G.

Theorem

Each *IgI* is a finite union of cosets I_X , the algebra $\mathcal{H}(G, I)$ is closed under convolution products, and

$$\mathbf{I}_{IsI} * \mathbf{1}_{IwI} = \mathbf{1}_{IswI}$$
 for $\ell(sw) > \ell(w)$ (16)

$$\mathbf{1}_{IsI} * \mathbf{1}_{IsI} = a_s \mathbf{1}_{IsI} + b_s \mathbf{1}_I$$
, with $a_s := q_s - 1$ and $b_s = q_s$. (17)

That is, these Iwahori-Hecke operators form a generic algebra with the indicated structure constants. Further, for a reduced expression $w = s_1 \cdots s_n$ (that is, with $n = \ell(w)$ and all $s_i \in S$), we have

$$q_w = q_{s_1} \cdots q_{s_n}.$$

Proof

First prove that double cosets *lwl* are finite unions of cosets *lx* at the same time that we study one of the requisite identities for the generic algebra structure. This also will prove that $\mathcal{H}(G, I)$ is closed under convolution products. Do induction on the length of $w \in W$. Take $s \in S$ so that $\ell(sw) > \ell(w)$. At $g \in G$ where $\mathbf{1}_{ls} * \mathbf{1}_{lwl}$ does not vanish, there is $h \in G$ so that

$$\mathbf{1}_{Isl}(gh^{-1})\mathbf{1}_{Iwl}(h) \neq 0.$$

For such h, we have $gh^{-1} \in IsI$ and $h \in IwI$. Thus, by the Bruhat cell multiplication rules,

$$g = (gh^{-1})h \in IsI \cdot IwI = IswI$$
.

Since this convolution product is left and right I-invariant

$$\mathbf{1}_{lsl} * \mathbf{1}_{lwl} = c \cdot \mathbf{1}_{lswl}$$
 for some positive rational number $c = c(s, w)$.

Compute the constant c = c(s, w) by summing the previous equality over $I \setminus G$

$$c \cdot q_{sw} = c \cdot |I \setminus lswI| = c \cdot \sum_{g \in I \setminus G} \mathbf{1}_{lswI} = c \cdot \mathbf{1}_{lswI}(g)$$

= $c \cdot \sum_{g \in I \setminus G} (\mathbf{1}_{lsI} * \mathbf{1}_{lwI})(g) = \sum_{g \in I \setminus G} \sum_{h \in I \setminus G} \mathbf{1}_{BsB}(gh^{-1})\mathbf{1}_{lwI}(h)$ (18)
= $\sum_{g \in I \setminus G} \sum_{h \in I \setminus G} \mathbf{1}_{lsI}(g)\mathbf{1}_{lwI}(h) = q_s q_w$

(the latter by replacing g by gh, interchanging order of summation).

Thus,

$$c = q_s q_w / q_{sw} \qquad (19)$$
and for $\ell(sw) > \ell(w)$

$$\mathbf{1}_{lsl} * \mathbf{1}_{lwl} = q_s q_w q_{sw}^{-1} \mathbf{1}_{lswl}. \qquad (20)$$

Remark

ar

This shows that the cardinality q_{sw} of $I \setminus IwI$ is finite for all $w \in W$, and therefore that the Hecke algebra is closed under convolution.