Local representation theory and Hecke algebras III

Anne-Marie Aubert

Institut de Mathématiques de Jussieu – Paris Rive Gauche C.N.R.S., Sorbonne Université and Université Paris Cité

Summer School on High-dimensional Expanders Ghent University — May 22-26, 2023

Let K be a compact open subgroup of G. We denote by $\mathcal{H}(G, K)$ the unital algebra $e_{K}\mathcal{H}(G)e_{K}$, where $e_{K} := \operatorname{vol}(K)^{-1}\mathbf{1}_{K}$, consisting of compactly supported bi-K-invariant locally constant functions on G.

Proposition

Let $G = GL_n(F)$ and $K_0 := GL_n(\mathfrak{o}_F)$, where \mathfrak{o}_F is the ring of integers of F. The spherical Hecke algebra $\mathcal{H}(G, K_0)$ is commutative.

Definition

A smooth representation π of G is said to be *spherical* (or *unramified*) if $\pi^{K_0} \neq 0$.

Corollary

Irreducible unramified representations of $G = \operatorname{GL}_n(F)$ correspond bijectively with algebra homomorphisms $\operatorname{Hom}_{\mathbb{C}\operatorname{-alg}}(\mathcal{H}(G, K_0), \mathbb{C})$.

Proof

We use the fact that, for any open compact subgroup K, the map $V \mapsto V^K$ is a bijection between irreducible smooth representations (π, V) such that $\pi^K \neq 0$ and simple $\mathcal{H}(G, K)$ -modules. Since $\mathcal{H}(G, K_0)$ is commutative, its simple modules are one-dimensional.

Definition

An irreducible representation (π, V) of G is said to have *depth zero* if $V^{G_{x,0^+}} \neq \{0\}$ for some point x of the Bruhat-Tits building of G, where $G_{x,0^+}$ is the pro-p unipotent radical of the parahoric subgroup $G_{x,0}$.

A representation of G is called *Iwahori-spherical* if it has a non-zero fixed vector under some Iwahori subgroup of G.

Remark

Every irreducible lwahori-spherical representation has depth zero.

Theorem [Morris, Moy-Prasad]

Let π be an irreducible depth-zero supercuspidal representation of G. Then there exists a maximal parahoric subgroup $G_{x,0}$ such that π is compactly induced from a representation ρ of the normalizer of $G_{x,0}$ in Gsuch that the restriction of ρ to $G_{x,0+}$ is 1-isotypic.

Example

Let τ be an irreducible cuspidal representation of $\operatorname{GL}_N(\mathbb{F}_q)$ (where \mathbb{F}_q is the residual field of F), let $\operatorname{infl}(\tau)$ denote the inflation of τ to the maximal compact subgroup K_0 of $\operatorname{GL}_n(F)$. We have $K_0 = G_{x,0}$, where x is a vertex in the Bruhat-Tits building of $\operatorname{GL}_n(F)$. The normalizer of K_0 in G is the group $F^{\times}K_0$. Let τ denote an extension of $\operatorname{infl}(\tau)$ to $F^{\times}K_0$.

- The representation c-Ind_{F×K0}^{GL_n(F)} τ is an irreducible depth-zero supercuspidal representation of GL_n(F).
- Any irreducible depth-zero supercuspidal representation of GL_n(F) is of the form c-Ind_{F×K0}^{GL_n(F)}τ for some irreducible cuspidal representation τ of GL_N(F_q)

A Coxeter group W is a group generated by a set S of elements of order 2, which has a presentation

$$W = \langle S : (ss')^{m_{s,s'}} = 1 \text{ for all } s, s' \in S \rangle,$$

where $m_{s,s'} \in \mathbb{Z}_{\geq 1}$ is the order of ss' in W.

The equalities $s^2 = 1$ (for $s \in S$) are called the *quadratic relations*, while the equalities $(ss')^{m_{s,s'}} = 1$, or equivalently

$$\underbrace{ss'ss'\cdots}_{m_{e,e'} \text{ terms}} = \underbrace{s'ss's\cdots}_{m_{e,e'} \text{ terms}}$$
(1)

are called the braid relations.

Examples of finite Coxeter groups

• $W = S_n$, with $S = \{(12), (23), ..., (n-1n)\}$, symmetric group, type A_{n-1} ;

② $W = S_n \ltimes \{\pm 1\}^n$, with $S = \{(12), (23), ..., (n - 1n), (id, (1, ..., 1, -1))\}$, hyperoctahedral group, type B_n or C_n.

Let (W, S) be a Coxeter group. Given $w \in W$ we denote by $\ell(w)$ its word length with respect to the generating set S. A word w with letters in S is called *reduced* if it has $\ell(w)$ many letters.

Proposition

Let (W, S) be a Coxeter group, equipped with a function $q: s \mapsto q_s$ from S to $\mathbb C$ satisfying

$$q_s = q_{s'}$$
 if s and s' are conjugate under W. (2)

There is a unique algebra structure $\mathcal{H}(W, q)$ on the \mathbb{C} -vector space spanned by elements T_w ($w \in W$) such that

(1)
$$T_1 = 1$$

(2)
$$(T_s - q_s)(T_s + 1) = 0$$
 for any $s \in S$ (quadratic relations),

(3) $T_s T_{s'} T_s \cdots = T_{s'} T_s T_{s'} \cdots$ where both sides have $m_{s,s'}$ elements (braid relations),

(3)
$$T_{ww'} = T_w T_{w'}$$
 if $\ell(ww') = \ell(w) + \ell(w')$.

The algebra $\mathcal{H}(W, q)$ is called the Hecke algebra of (W, q).

A chamber complex is a simplicial complex X such that all simplices of X are contained in a maximal simplex and such that for every pair x, y of maximal simplices of X there exists a chain $x = x_0, x_1, \ldots, x_n = y$ of adjacent maximal simplices in X. The maximal simplices are called chambers.

A chamber complex is called *thin* if each facet of a chamber is the facet of exactly two chambers, and it is called *thick* if each facet of a chamber is the facet of at least three chambers.

An important example of a thin chamber complex is the *Coxeter complex* $\Sigma(W, S)$ associated with a Coxeter system (W, S).

A system of apartments in a chamber complex X is a set A of thin chamber subcomplexes such that

- for each pair of simplices x, y of X there is $A \in A$ such that $x, y \in A$, and
- if A, A' ∈ A contain a common chamber C and a simplex x, then there is an isomorphism of chamber complexes A → A' that fixes C and x point-wise.

Definition

A *thick building* is a thick chamber complex that admits a system of apartments. One can prove that for a thick building X there is a unique maximal apartment system. So if X is thick, as we assume from now on, it makes sense to speak of an apartment of X without reference to a specific system of apartments.

There is a Coxeter system (W, S) such that every apartment of X is chamber isomorphic with $\Sigma(W, S)$. The choice of a fundamental chamber C in X and a compatible labelling of its facets by elements of S makes these isomorphisms unique and introduces a labelling of all facets of chambers in X. The Coxeter system (W, S) is called the type of X.

Definition

Let X be a building of type (W, S). The *thickness* of X is the tuple $(d_s)_{s \in S}$ where $d_s - 1$ is the cardinality of the set of chambers containing the fundamental chamber's facet labelled by s (so that a building is thick if and only if $d_s \ge 2$ for all $s \in S$). The building is called *locally finite* if all d_s , $s \in S$ are finite.

Let *I* be an Iwahori subgroup of *G*. The algebra $\mathcal{H}(G, I)$ is defined to be the convolution algebra consisting of all compactly supported left and right *I*-invariant functions on *G*.

Theorem

Let X be the Bruhat-Tits building of G and denote by $(d_s)_{s \in S}$ the thickness of X. Let $q_s := d_s^{-1}$, for $s \in S$. Then, as *-algebras,

$$\mathcal{H}(G,I) \simeq \mathcal{H}(W,q)$$
 (3)

with an isomorphism given by the map $T_w \mapsto (-1)^{\ell(w)} \sqrt{q}_w \mathbf{1}_{IwI}$, where for an element $w \in W_f$ with a reduced expression $w = s_1 s_2 \cdots s_r$

$$q_w := q_{s_1} q_{s_2} \cdots q_{s_r}. \tag{4}$$

A root datum is a 4-tuple $\mathcal{R} = (X, Y, R, R^{\vee})$ such that X, Y are free abelian groups of finite rank together with a perfect pairing

 $\langle , \rangle \colon X \times Y \to \mathbb{Z},$

 $R \subset X \setminus \{0\}$, $R^{\vee} \subset Y \setminus \{0\}$ are the finite sets of roots and coroots respectively, in bijection $\alpha \leftrightarrow \alpha^{\vee}$ such that $\langle \alpha, \alpha^{\vee} \rangle = 2$,

• for every $\alpha \in R$, the reflection

$$s_lpha\colon X o X, \quad s_lpha(x):=x-\langle x,lpha^ee
angle, \quad ext{stabilizes } R,$$

• for every $\alpha \in R^{\vee}$, the reflection

$$s_{lpha^{ee}} \colon Y o Y, \quad s_{lpha^{ee}}(y) := y - \langle lpha, y
angle, \quad ext{stabilizes } R^{ee}$$

Notation

Often we will add a basis Δ to R, and speak of a based root datum. The group $W_{\rm f} = W(R) \subset \operatorname{GL}(X)$ generated by the s_{α} with $\alpha \in \Delta$ is a finite Weyl group,

Definition

The infinite group

$$W_{\rm ex} := W_{\rm f} \rtimes X \tag{5}$$

is called the extended affine Weyl group.

The elements of W_{ex} are of the form wt_x , where $w \in W$ and $x \in X$ and we have:

$$(w_1t_{x_1})\cdot(w_2t_{x_2})=w_1w_2t_{w^{-1}(x_1)+x_2}.$$

The group W_{ex} acts naturally on the vector space $X \otimes_{\mathbb{Z}} \mathbb{R}$: W_f by linear extension of its action on X and X by translations. The collection of hyperplanes

$$H_{\alpha,n} := \{ x \in X \otimes_{\mathbb{Z}} \mathbb{R} : \alpha^{\vee}(x) = n \} \quad \alpha \in R, n \in \mathbb{Z}, \}$$

is W_{ex} -stable and divides $X \otimes_{\mathbb{Z}} \mathbb{R}$ in open subsets called *alcoves*.

Definition

Let W_{aff} be the subgroup of W_{ex} generated by the reflections in the hyperplanes $H_{\alpha,n}$. It is an affine Weyl group. The basis Δ determines a "fundamental alcove" A_0 in $X \otimes_{\mathbb{Z}} \mathbb{R}$, and let S_{aff} be the set of reflections with respect to the walls of A_0 . Then $(W_{\text{aff}}, S_{\text{aff}})$ is a Coxeter system.

We have

$$W_{\rm ex} = W_{\rm aff}
times \Omega,$$
 (6)

where Ω is the stabilizer of A_0 in $W_{\rm ex}$.

The length function on $(W_{\mathrm{aff}}, S_{\mathrm{aff}})$ satisfies

V

 $\ell(w) =$ number of hyperplanes $H_{\alpha,n}$: that separate $w(A_0)$ from A_0 . (7)

We extend ℓ to a function $W(\mathcal{R}) \to \mathbb{Z}_{\geq 0}$, by decreeing that (7) is valid for all $w \in W_{ex}$. Then

$$\Omega = \{ w \in W(R) : \ell(w) = 0 \}.$$

Affine Hecke algebras V

Example

Let
$$X := Y = \mathbb{Z}^n$$
,
 $R := R^{\vee} = A_{n-1} = \{\varepsilon_i - \varepsilon_j : 1 \le i, j \le n, i \ne j\},$
 $\Delta := \{\varepsilon_i - \varepsilon_{i+1} : i = 1, ..., n-1\}.$ Here S_{aff} is the union
 $\{s_i = s_{\varepsilon_i - \varepsilon_{i+1}}\alpha : i = 1, ..., n-1\} \cup \{s_0 : x \mapsto x + (1 - \langle x, \varepsilon_1 - \varepsilon_n \rangle)(\varepsilon_1 - \varepsilon_n)\}.$
We have
 $W_f \simeq S_n$ and $W_{\text{aff}} = \{(x_1, ..., x_n) \in \mathbb{Z}^n : x_1 + \cdots + x_n = 0\} \rtimes S_n,$
and Ω is isomorphic to \mathbb{Z} , generated by $\omega := \varepsilon_1 (12 \cdots n)$. The action of

and Ω is isomorphic to \mathbb{Z} , generated by $\omega := \varepsilon_1(12\cdots n)$. The action of ω on S_{aff} is $\omega s_i \omega^{-1} = s_{i+1}$ (where s_n means s_0).

Notation

- Let *R* = (*X*, *R*, *Y*, *R*[∨]) be an irreducible root datum with finite Weyl group *W*_f,
- let $q \in \mathbb{R}_{\geq 1}$,
- let $\lambda, \lambda^* \colon R \to \mathbb{C}$ be W_{f} -invariant functions such that

$$\alpha \notin 2Y \implies \lambda(\alpha) = \lambda^*(\alpha). \tag{8}$$

• Let $\mathbb{C}[X]$ be the group algebra of X, with the standard basis $\{\theta_x, x \in X\}$ and let $\mathcal{H}(W_f, q)$ be the Hecke algebra of W_f .

Proposition

There is a unique algebra structure on the vector space

$$\mathcal{H}(\mathcal{R},\lambda,\lambda^*,oldsymbol{q}) := \mathbb{C}[X] \otimes \mathcal{H}(W_{\mathrm{f}},oldsymbol{q})$$

such that the following relations are satisfied:

- (1) $\mathbb{C}[X]$ and $\mathcal{H}(W_{\mathrm{f}}, q)$ are embedded as subalgebras,
- (2) for $\alpha \in \Delta$ and $x \in X$:

$$\begin{aligned} \theta_{x}T_{s_{\alpha}} - T_{s_{\alpha}}\theta_{s_{\alpha}(x)} = \\ \left((q^{\lambda(\alpha)} - 1) + \theta_{-\alpha} (q^{(\lambda(\alpha) + \lambda^{*}(\alpha))/2} - q^{(\lambda(\alpha) - \lambda^{*}(\alpha))/2}) \right) \frac{\theta_{x} - \theta_{s_{\alpha}(x)}}{\theta_{0} - \theta_{-2\alpha}}, \end{aligned}$$

where $\{\theta_x : x \in X\}$ is a basis of $\mathbb{C}[X]$. It is an associative algebra.

Theorem [Bernstein]

Suppose that $q_s \neq 0$ for all $s \in S_{\text{aff}}$. Let $\lambda(\alpha)$, $\lambda^*(\alpha)$ such that

$$q_{s_lpha}=q^{\lambda(lpha)}$$
 for all $lpha\in R$ and $q_{s'_lpha}=q^{\lambda^*(lpha)}$ when $lpha^ee\in R^ee_{ ext{max}}$,

where R_{\max}^{\vee} is the set of maximal elements of R^{\vee} , with respect to Δ^{\vee} . Then there exists a unique algebra isomorphism

$$\mathcal{H}(W_{\mathrm{aff}}, q) \longrightarrow \mathcal{H}(\mathcal{R}, \lambda, \lambda^*, q)$$
 (9)

such that

- it is the identity on $\mathcal{H}(W_{\rm f}, q)$,
- for $x \in \mathbb{Z}R$ with $\langle x, \alpha^{\vee} \rangle \ge 0$ for all $\alpha \in \Delta$, it sends $q_x^{-1/2}T_x$ to θ_x .

Notation

Let $\mathcal{R} = (X, R, Y, R^{\vee}, \Delta)$ be a based root datum and let J be a subset of Δ . Then $R_J := R \cap \mathbb{Q}J$ is a standard parabolic root subsystem of R, with dual root system $R_J^{\vee} := R^{\vee} \cap \mathbb{Q}J^{\vee}$, and $\mathcal{R}_J := (X, R_J, Y, R_J^{\vee}, J)$ is a the based root datum. Let W_I denote the Weyl group of \mathcal{R}_I .

Any parameter functions λ , λ^* for \mathcal{R} restrict to parameter functions for \mathcal{R}_J , and $\mathcal{H}_J := \mathcal{H}(\mathcal{R}_J, \lambda, \lambda^*, q)$ is a subalgebra of $\mathcal{H} := \mathcal{H}(\mathcal{R}, \lambda, \lambda^*, q)$. The algebras \mathcal{H} and \mathcal{H}_J share the same commutative subalgebra $\mathbb{C}[X]$.

Definition

Parabolic induction for representations of affine Hecke algebras is defined to be the induction functor

$$\operatorname{ind}_{\mathcal{H}_{J}}^{\mathcal{H}} \colon \operatorname{Mod}(\mathcal{H}_{J}) \longrightarrow \operatorname{Mod}(\mathcal{H}) \\ M_{J} \mapsto M_{J} \otimes_{\mathcal{H}_{J}} \mathcal{H}.$$
(10)

Parabolic restriction is the restriction functor

$$\begin{array}{cc} \operatorname{Res}_{\mathcal{H}_{J}}^{\mathcal{H}} \colon & \operatorname{Mod}(\mathcal{H}) \longrightarrow \operatorname{Mod}(\mathcal{H}_{J}) \\ & M \mapsto M \otimes_{\mathcal{H}} \mathcal{H}_{J}. \end{array}$$
(11)

Let (π, V) be a representation of \mathcal{H} . For $t \in \mathcal{T} := \operatorname{Hom}_{\mathbb{Z}}(X, \mathbb{C}^{\times})$ we write

$$V_t^{\text{gen}} := \left\{ v \in V \ : \ (\pi(\theta_x) - x(t))^N v = 0 \text{ for some } N \in \mathbb{N} \right\}.$$
(12)

When $V_t^{\text{gen}} \neq 0$, we call t a *weight* of π and we denote by $Wt(\pi)$ the set of weights of π .

A finite dimensional representation (π, V) of \mathcal{H} is *tempered* (resp. *essentially tempered*) if

$$|t(x)| \leq 1$$
 for all $t \in Wt(\pi)$, $x \in X^+$ (resp. $x \in X^+ \cap W_{\mathrm{aff}}$), (13)

where $X^+ := \{x \in X : \langle x, \alpha^{\vee} \rangle \ge 0 \ \forall \alpha \in \Delta \}.$

The complex torus T admits a polar decomposition

$$T = T_{un} \times \operatorname{Hom}_{\mathbb{Z}}(X, \mathbb{R}_{>0}), \text{ where } T_{un} := \operatorname{Hom}_{\mathbb{Z}}(X, \mathbb{S}^1).$$
 (14)

Here the unitary part T_{un} is the maximal compact subgroup of T.

A Langlands datum for \mathcal{H} is a pair (J, δ) formed by a subset J of Δ and an irreducible essentially tempered representation δ of \mathcal{H}_J in "positive position".

Theorem

Let (J, δ) be a Langlands datum for \mathcal{H} . Then

- (1) The representation $\operatorname{ind}_{\mathcal{H}_J}^{\mathcal{H}}(\delta)$ has an irreducible quotient, say $L(J, \delta)$.
- (2) For every irreducible representation π of \mathcal{H} , there exists a Langlands datum (J, δ) such that $L(J, \delta) \simeq \pi$.
- (3) If (J', δ') is another Langlands datum and $L(J', \delta') \simeq L(J, \delta)$, then J' = J and the representations δ and δ' are equivalent.

Thank you so much for your attention!

