Abstract Commensurators of Profinite Groups

Yiftach Barnea

Department of Mathematics Royal Holloway

April 3rd 2013

Joint work with Mikhail Ershov and Thomas Weigel

∃ → < ∃</p>

The Fundamental Question

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

The Fundamental Question

Van Dantzig: Every totally disconnected locally compact (t.d.l.c.) group contains an open profinite subgroup.

→ < ∃ > < ∃</p>

The Fundamental Question

Van Dantzig: Every totally disconnected locally compact (t.d.l.c.) group contains an open profinite subgroup.

Fundamental Question: Let *L* be a t.d.l.c. group and $G \leq_o L$ open profinite group in *L*. What is the connection between the algebraic properties of *G* and the algebraic properties of *L*?

伺い イラト イラト

The Fundamental Question

Van Dantzig: Every totally disconnected locally compact (t.d.l.c.) group contains an open profinite subgroup.

Fundamental Question: Let *L* be a t.d.l.c. group and $G \leq_o L$ open profinite group in *L*. What is the connection between the algebraic properties of *G* and the algebraic properties of *L*?

More Specific Questions: Given a profinite group G can it be embedded in a simple t.d.l.c. group L as an open subgroup? If yes, is such L unique?

- 4 回 5 - 4 三 5 - 4 三 5

Commensurators and Virtual Automorphisms

<ロ> <同> <同> < 回> < 回>

æ

Commensurators and Virtual Automorphisms

Let G be a discrete (topological) group and let H be a (closed) subgroup in G.

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Commensurators and Virtual Automorphisms

Let G be a discrete (topological) group and let H be a (closed) subgroup in G. We define the **relative commensurator** of H in G to be

 $\operatorname{Comm}_{G}(H) = \{g \in G \mid [H : H \cap H^{g}] < \infty \text{ and } [H^{g} : H \cap H^{g}] < \infty \}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Commensurators and Virtual Automorphisms

Let G be a discrete (topological) group and let H be a (closed) subgroup in G. We define the **relative commensurator** of H in G to be

 $\operatorname{Comm}_{G}(H) = \{g \in G \mid [H : H \cap H^{g}] < \infty \text{ and } [H^{g} : H \cap H^{g}] < \infty \}$

 $\left(\operatorname{Comm}_{G}(H) = \{g \in G \mid H \cap H^{g} \leq_{o} H \text{ and } H \cap H^{g} \leq_{o} H^{g}\}\right).$

・ロト ・ 同ト ・ ヨト ・ ヨト - -

Commensurators and Virtual Automorphisms

Let G be a discrete (topological) group and let H be a (closed) subgroup in G. We define the **relative commensurator** of H in G to be

 $\operatorname{Comm}_{G}(H) = \{g \in G \mid [H : H \cap H^{g}] < \infty \text{ and } [H^{g} : H \cap H^{g}] < \infty \}$

$$(\operatorname{Comm}_{G}(H) = \{g \in G \mid H \cap H^{g} \leq_{o} H \text{ and } H \cap H^{g} \leq_{o} H^{g}\}).$$

A **virtual automorphism** of G is an (continuous) isomorphism between two subgroups of finite index (open subgroups).

(人間) とうき とうき

Commensurators and Virtual Automorphisms

Let G be a discrete (topological) group and let H be a (closed) subgroup in G. We define the **relative commensurator** of H in G to be

 $\operatorname{Comm}_{G}(H) = \{g \in G \mid [H : H \cap H^{g}] < \infty \text{ and } [H^{g} : H \cap H^{g}] < \infty \}$

$$\left(\operatorname{Comm}_{\mathcal{G}}(H) = \{g \in \mathcal{G} \mid H \cap H^g \leq_o H \text{ and } H \cap H^g \leq_o H^g\}\right).$$

A **virtual automorphism** of G is an (continuous) isomorphism between two subgroups of finite index (open subgroups).

We say that two virtual automorphisms φ and ψ are **equivalent** if they agree on a subgroup of finite index (an open subgroup). We then write $[\varphi]$ for the equivalence class of φ .

We define the **abstract commensurator** of G to be

 $\operatorname{Comm}(G) = \{ [\varphi] \mid \varphi \text{ is a virtual automorphism of } G \}.$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

We define the **abstract commensurator** of G to be

 $\operatorname{Comm}(G) = \{ [\varphi] \mid \varphi \text{ is a virtual automorphism of } G \}.$

Notice that the following is commuting:

$$\begin{array}{rcl} H & \leq & N_G(H) & \leq & \operatorname{Comm}_G(H) \\ \downarrow & & \downarrow & & \downarrow \\ H & \rightarrow & \operatorname{Aut}(H) & \rightarrow & \operatorname{Comm}(H). \end{array}$$

< 同 > < 三 > < 三 >

We define the **abstract commensurator** of G to be

 $\operatorname{Comm}(G) = \{ [\varphi] \mid \varphi \text{ is a virtual automorphism of } G \}.$

Notice that the following is commuting:

$$\begin{array}{rcl} H & \leq & N_G(H) & \leq & \operatorname{Comm}_G(H) \\ \downarrow & & \downarrow & & \downarrow \\ H & \rightarrow & \operatorname{Aut}(H) & \rightarrow & \operatorname{Comm}(H). \end{array}$$

Also: If $U \leq_f G$ $(U \leq_o G)$, then $\operatorname{Comm}(U) \cong \operatorname{Comm}(G)$.

(人間) シスヨン メヨン

Topology

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

Topology

Let G be a profinite group.

æ

伺 と く ヨ と く ヨ と

Topology

Let G be a profinite group.

Aut-topology: For simplicity assume G is finitely generated. Then Aut(G) is also a profinite group.

A > < > > < >

Topology

Let G be a profinite group.

Aut-topology: For simplicity assume G is finitely generated. Then Aut(G) is also a profinite group.

For $U \leq_o G$ let $\kappa_U : \operatorname{Aut}(U) \to \operatorname{Comm}(U) \cong \operatorname{Comm}(G)$. Then Aut-topology is the strongest topology in which κ_U is continuous for all $U \leq_o G$. We write $\operatorname{Comm}(G)_A$ for the group with the Aut-topology.

・ 同 ト ・ ヨ ト ・ ヨ ト

Topology

Let G be a profinite group.

Aut-topology: For simplicity assume G is finitely generated. Then Aut(G) is also a profinite group.

For $U \leq_o G$ let $\kappa_U : \operatorname{Aut}(U) \to \operatorname{Comm}(U) \cong \operatorname{Comm}(G)$. Then Aut-topology is the strongest topology in which κ_U is continuous for all $U \leq_o G$. We write $\operatorname{Comm}(G)_A$ for the group with the Aut-topology.

In this case $\text{Comm}(G)_A$ is a topological group. However, whether it is Hausdorff or locally compact are more refined questions which are related to the algebraic structure of G.

・ロト ・同ト ・ヨト ・ヨト

Strong topology: Let $i : G \to \text{Comm}(G)$. Then $i(G) \cong G/ \text{ker } i$ is a topological group.

- < 同 > < 三 > < 三 >

э

Strong topology: Let $i: G \to \text{Comm}(G)$. Then $i(G) \cong G/\ker i$ is a topological group. It is possible to extend the the topology to Comm(G) by letting i(U) for $U \leq_0 G$ be a base for the topology at the identity and making Comm(G) a topological group. We write $\text{Comm}(G)_S$ for the group with the strong topology.

・ 同 ト ・ ヨ ト ・ ヨ ト

Strong topology: Let $i: G \to \text{Comm}(G)$. Then $i(G) \cong G/\ker i$ is a topological group. It is possible to extend the the topology to Comm(G) by letting i(U) for $U \leq_0 G$ be a base for the topology at the identity and making Comm(G) a topological group. We write $\text{Comm}(G)_S$ for the group with the strong topology.

Let the **virtual centre** of G be

 $\ker i = \operatorname{VZ}(G) = \{g \in G \mid [g] = [1]\} = \{g \in G \mid \operatorname{Cent}_G(g) \leq_o G\}.$

- 4 同 2 4 日 2 4 日 2

Strong topology: Let $i: G \to \text{Comm}(G)$. Then $i(G) \cong G/\ker i$ is a topological group. It is possible to extend the the topology to Comm(G) by letting i(U) for $U \leq_0 G$ be a base for the topology at the identity and making Comm(G) a topological group. We write $\text{Comm}(G)_S$ for the group with the strong topology.

Let the **virtual centre** of G be

 $\ker i = \operatorname{VZ}(G) = \{g \in G \mid [g] = [1]\} = \{g \in G \mid \operatorname{Cent}_G(g) \leq_o G\}.$

If $VZ(G) \leq_c G$, then $Comm(G)_S$ is a locally compact group. However, it is not always σ -compact.

(日) (同) (三) (三)

Examples:

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

Examples:

• For $G = \prod_{n \ge 1} S_n$ we have that $VZ(G) = \bigoplus_{n \ge 1} S_n$.

(日) (同) (三) (三)

3

Examples:

• For
$$G = \prod_{n \ge 1} S_n$$
 we have that $VZ(G) = \bigoplus_{n \ge 1} S_n$.

Comm(Z_p) = Q^{*}_p, where the Aut-topology is the usual topology and the strong-topology is the discrete topology.

🗇 🕨 🖌 🖻 🕨 🖌 🚍 🕨

Examples:

• For
$$G = \prod_{n \geq 1} S_n$$
 we have that $VZ(G) = \bigoplus_{n \geq 1} S_n$.

- Comm(Z_p) = Q^{*}_p, where the Aut-topology is the usual topology and the strong-topology is the discrete topology.
- **Serre**: If G is p-adic analytic pro- $p \Rightarrow$ Comm $(G) \cong Aut_{\mathbb{Q}_p}(\mathfrak{L}(G)).$

🗇 🕨 🖌 🖻 🕨 🖌 🚍 🕨

Examples:

- For $G = \prod_{n \ge 1} S_n$ we have that $VZ(G) = \bigoplus_{n \ge 1} S_n$.
- Comm(Z_p) = Q^{*}_p, where the Aut-topology is the usual topology and the strong-topology is the discrete topology.

3 Serre: If G is p-adic analytic pro-
$$p \Rightarrow$$

Comm $(G) \cong Aut_{\mathbb{Q}_p}(\mathfrak{L}(G)).$

Pink: Let F be a local field, let G be an absolute simple, simply connected, algebraic group over F, and let G be an open compact subgroup of G(F) ⇒
 Comm(G) ≅ Aut(G)(F) ⋊ Aut(F) ≅ Aut(G(F));

< 同 > < 三 > < 三 >

Examples:

- For $G = \prod_{n \ge 1} S_n$ we have that $VZ(G) = \bigoplus_{n \ge 1} S_n$.
- Comm(Z_p) = Q^{*}_p, where the Aut-topology is the usual topology and the strong-topology is the discrete topology.

3 Serre: If G is p-adic analytic pro-
$$p \Rightarrow$$

Comm $(G) \cong Aut_{\mathbb{Q}_p}(\mathfrak{L}(G)).$

- Pink: Let F be a local field, let G be an absolute simple, simply connected, algebraic group over F, and let G be an open compact subgroup of G(F) ⇒
 Comm(G) ≅ Aut(G)(F) ⋊ Aut(F) ≅ Aut(G(F));
- Service Se

- < 同 > < 三 > < 三 >

Examples:

- For $G = \prod_{n \ge 1} S_n$ we have that $VZ(G) = \bigoplus_{n \ge 1} S_n$.
- Comm(Z_p) = Q^{*}_p, where the Aut-topology is the usual topology and the strong-topology is the discrete topology.

3 Serre: If G is p-adic analytic pro-
$$p \Rightarrow$$

Comm $(G) \cong Aut_{\mathbb{Q}_p}(\mathfrak{L}(G)).$

- Pink: Let F be a local field, let G be an absolute simple, simply connected, algebraic group over F, and let G be an open compact subgroup of G(F) ⇒
 Comm(G) ≅ Aut(G)(F) ⋊ Aut(F) ≅ Aut(G(F));
- Solution **Ershov:** Let \mathbb{F} be a local field. Then $\operatorname{Comm}(J_p) \cong \operatorname{Comm}(\operatorname{Aut}(\mathbb{F})) \cong \operatorname{Aut}(\mathbb{F}).$
- Neukrich and Uchida: $G = G_{\mathbb{Q}} = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \Rightarrow$ $\operatorname{Comm}(G) \cong G.$

The Universal Property and Applications

< ロ > < 同 > < 回 > < 回 >

э

The Universal Property and Applications

Lemma: If VZ(G) = 1, *L* is a topologically simple t.d.l.c. group, $G \leq_o L$, then *L* is embedded into $Comm(G)_S$ as an open subgroup.

🗇 🕨 🖌 🖻 🕨 🖌 🚍 🕨

The Universal Property and Applications

Lemma: If VZ(G) = 1, *L* is a topologically simple t.d.l.c. group, $G \leq_o L$, then *L* is embedded into $Comm(G)_S$ as an open subgroup.

Corollary: $Aut(\mathbb{F})$ cannot be embedded as an open subgroup of a topologically simple t.d.l.c. group.

伺き くまき くまき

The Universal Property and Applications

Lemma: If VZ(G) = 1, *L* is a topologically simple t.d.l.c. group, $G \leq_o L$, then *L* is embedded into $Comm(G)_S$ as an open subgroup.

Corollary: $Aut(\mathbb{F})$ cannot be embedded as an open subgroup of a topologically simple t.d.l.c. group.

Corollary: Let G be a p-adic analytic pro-p group with VZ(G) = 1, then G can be embedded as an open subgroup in at most one topologically simple t.d.l.c. group.

- < 同 > < 三 > < 三 >

Sticky Subgroup

< □ > < □ > < □ >

æ

Sticky Subgroup

Definition: Let G be a profinite group with VZ(G) = 1. A closed subgroup N in G is called **sticky** if $[N : N \cap N^x] < \infty$ and $[N^x : N \cap N^x] < \infty$ for all $x \in Comm(G)$.

伺 と く ヨ と く ヨ と

Sticky Subgroup

Definition: Let G be a profinite group with VZ(G) = 1. A closed subgroup N in G is called **sticky** if $[N : N \cap N^x] < \infty$ and $[N^x : N \cap N^x] < \infty$ for all $x \in Comm(G)$.

Theorem: Let G be a profinite group. If G contains a non-trivial normal sticky subgroup N such that $\text{Cent}_G(N) \neq 1$, then G cannot be embedded as an open subgroup of a compactly generated topologically simple t.d.l.c. group.

- 4 同 2 4 日 2 4 日 2

Sticky Subgroup

Definition: Let G be a profinite group with VZ(G) = 1. A closed subgroup N in G is called **sticky** if $[N : N \cap N^x] < \infty$ and $[N^x : N \cap N^x] < \infty$ for all $x \in Comm(G)$.

Theorem: Let G be a profinite group. If G contains a non-trivial normal sticky subgroup N such that $\text{Cent}_G(N) \neq 1$, then G cannot be embedded as an open subgroup of a compactly generated topologically simple t.d.l.c. group.

Corollary: Let *G* be a profinite group with VZ(G) = 1. If R_G , the fitting subgroup of *G*, is non-trivial and nilpotent, then *G* cannot be embedded as an open subgroup of a compactly generated topologically simple t.d.l.c. group.

(日) (同) (三) (三)

Sticky Subgroup

Definition: Let G be a profinite group with VZ(G) = 1. A closed subgroup N in G is called **sticky** if $[N : N \cap N^x] < \infty$ and $[N^x : N \cap N^x] < \infty$ for all $x \in Comm(G)$.

Theorem: Let G be a profinite group. If G contains a non-trivial normal sticky subgroup N such that $\text{Cent}_G(N) \neq 1$, then G cannot be embedded as an open subgroup of a compactly generated topologically simple t.d.l.c. group.

Corollary: Let G be a profinite group with VZ(G) = 1. If R_G , the fitting subgroup of G, is non-trivial and nilpotent, then G cannot be embedded as an open subgroup of a compactly generated topologically simple t.d.l.c. group.

Example: $SL_d(\mathbb{F}_p[[X, Y]]$ cannot be embedded as an open subgroup of a compactly generated topologically simple t.d.l.c.

Construction

< ロ > < 回 > < 回 > < 回 > < 回 >

2

Construction

Lemma: Let Γ be a residually finite discrete group and let $\widehat{\Gamma}$ be the profinite completion of Γ . Then there is a natural embedding of $\operatorname{Comm}(\Gamma)$ into $\operatorname{Comm}(\widehat{\Gamma})$.

A B > A B >

Construction

Lemma: Let Γ be a residually finite discrete group and let $\widehat{\Gamma}$ be the profinite completion of Γ . Then there is a natural embedding of $\operatorname{Comm}(\Gamma)$ into $\operatorname{Comm}(\widehat{\Gamma})$.

Proposition: Let Γ be a residually finite discrete group. Suppose $\Gamma \leq \Delta$, where Δ is a finitely generated simple group and $\operatorname{Comm}_{\Delta}(\Gamma) = \Delta$. Assume $\widehat{\Gamma}$ is just infinite and $\operatorname{VZ}(\widehat{\Gamma}) = 1$. Then $\widehat{\Gamma} \leq_{o} \operatorname{Comm}(\Gamma) = \left\langle \widehat{\Gamma}, \operatorname{Comm}(\Gamma) \right\rangle$ which is a compactly generated topologically simple group.

Corollary: Let Γ be the Grigorchuk group. Then $\widehat{\Gamma}$ is embedded as an open subgroup of a compactly generated topologically simple t.d.l.c. group.

- (目) - (日) - (日)

Construction

Lemma: Let Γ be a residually finite discrete group and let $\widehat{\Gamma}$ be the profinite completion of Γ . Then there is a natural embedding of $\operatorname{Comm}(\Gamma)$ into $\operatorname{Comm}(\widehat{\Gamma})$.

Proposition: Let Γ be a residually finite discrete group. Suppose $\Gamma \leq \Delta$, where Δ is a finitely generated simple group and $\operatorname{Comm}_{\Delta}(\Gamma) = \Delta$. Assume $\widehat{\Gamma}$ is just infinite and $\operatorname{VZ}(\widehat{\Gamma}) = 1$. Then $\widehat{\Gamma} \leq_{o} \operatorname{Comm}(\Gamma) = \left\langle \widehat{\Gamma}, \operatorname{Comm}(\Gamma) \right\rangle$ which is a compactly generated topologically simple group.

Corollary: Let Γ be the Grigorchuk group. Then $\widehat{\Gamma}$ is embedded as an open subgroup of a compactly generated topologically simple t.d.l.c. group.

Pf. **Class Röver:** Such Δ as above exists.

< ロ > < 回 > < 回 > < 回 > < 回 >

2