

Yair Glasner

Invariant random subgroups and applications

BGU

臣

・ロ・・ (日・・ (日・・ 日・・)

Plan	IRS	Essential	proof
Plan			

2 IRS Definitions, Examples, Theorems

- 3 Essential subgroups
- 4 Proof of the main theorem

Yair Glasner

BGU

IRS

Definition

Га I.c group.

- Sub(Γ) = {subgroups of Γ }.
- Compact Chaubuty topology.

F discrete

$$d(\Delta, \Sigma) = e^{-V}$$
 $V = \sup_{R} \left\{ [\Delta \cap B(R)] = [\Sigma \cap B(R)] \right\}.$

■ IRS(Γ) = $\mathcal{M}(Sub(\Gamma))^{\Gamma}$ - inv. prob. measures.

Yair Glasner

Invariant random subgroups and applications

BGU

(日) (同) (目) (日) (日) (日)

Plan	IRS	Essential	proof
Example	s of IBS		

Example

- **Normal:** δ_N for $N \triangleleft \Gamma$.
- **Lattice** μ_{Γ} : $\Delta = g \Gamma g^{-1}$ *g* Haar random.
- Standard: *w**-limit of such.
- Sofic question: Is every IRS a limit?
- **Universal:** Γ_X for a p.m.p action $\Gamma \curvearrowright (X, \mathcal{B}, \mu)$.

Induction

$$\mathsf{Pr}\left\{\mathsf{Ind}_{\Gamma}^{G}(\Delta)\in A
ight\} = \int_{G/\Gamma}\left\{\mathsf{Pr}\,\gamma^{-1}\Delta\gamma\in A
ight\}d\mu(\gamma).$$

Yair Glasner

Invariant random subgroups and applications

・ロト ・回ト ・ヨト ・ヨト … ヨ

Plan	IRS	Essential	proof

Measurable simplicity

Theorem (Stuck-Zimmer)

- *G* Simple Lie group $\mathbf{R}_{rk}(G) \ge 2$. Non-trivial ergodic IRS:
 - (i) $\delta_{\langle e \rangle}$, (ii) δ_G , (iii) μ_{Γ} .

Follows for lattices by induction.

- Generalizes Margulis Normal subgroup theorem.
- False for $SL_2(\mathbf{R})$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

BGU

- X_n : finite graphs (q + 1)-regular,
- $a_{\ell}(n) = \#\{\text{closed non-BT paths, length } \ell \text{ in } X_n\}.$
- $\gamma_{\ell} = \lim_{n \to \infty} a_{\ell}(n)$ (on subsequence).

Theorem (Abért - G - Virág)

The following are equivalent

•
$$\gamma_{\ell} = 0 \quad \forall \ell \in \mathbf{N}$$

• $\sum_{\ell=1}^{\infty} \gamma_{\ell} q^{-\ell/2} < \infty$

Yair Glasner

Plan	IRS	Essential	proof
Sportral	roformulation		

BGU

Spectral reformulation

- X_n : finite graphs (q + 1)-regular,
- $\mu(n) =$ Spectral measure of RW operator.
- $\mu = \lim_{n \to \infty} \mu(n)$ (on subsequence).

Theorem (Abért - G - Virág)

The following are equivalent

$$\quad \blacksquare \ \mu\left(\left[-2\sqrt{q}, 2\sqrt{q}\right]\right) = 1$$

$$= \mu = \mu_{\text{KM}} = \frac{q+1}{2\pi} \frac{\sqrt{4q-x^2}}{(q+1)^2 - x^2}$$

Yair Glasner

Plan	IRS	Essential	proof
Spootral	roformulation		

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

BGU

Spectral reformulation

- X_n : finite graphs (q + 1)-regular,
- $\mu(n) =$ Spectral measure of RW operator.
- $\mu = \lim_{n \to \infty} \mu(n)$ (on subsequence).

Theorem (Abért - G - Virág)

The following are equivalent

•
$$\mu([-2\sqrt{q}, 2\sqrt{q}]) = 1$$

• $\mu = \mu_{\text{KM}} = \frac{q+1}{2\pi} \frac{\sqrt{4q-x^2}}{(q+1)^2 - x^2} dx$

Yair Glasner

Plan	IRS	Essential	proof
Limit mult	iplicity theorems		

- X_n different, compact, *G*-loc-sym. (*G* simple $\mathbf{R}_{rk} \ge 2$).
- X = G/K the symmetric space.

Theorem (Abért, Bergeron, Biringer, Gelander, Nikolov, Raimbault, Samet)

$$\begin{array}{ll} \displaystyle \frac{m(\pi,X_n)}{vol(X_n)} & \to & d(\pi) & \forall \pi \in \hat{G}, d(\pi) = \textit{formal dimension} \\ \\ \displaystyle \frac{b_k(X_n)}{vol(X_n)} & \to & \beta_k^{(2)}(X) & \forall k \in \mathbf{N} \end{array}$$

Yair Glasner

Invariant random subgroups and applications

(ロ) (部) (E) (E) =

Realization problem for Furstenberg entropy

- $(\Gamma, \mu) \frown (X, \mathcal{B}, [\eta])$ (stationary action).
- Furstenberg entropy:

$$h_\mu(X,\eta):=\int\int -\lograc{d\eta\circ g}{d\eta}d\eta(x)d\mu(g).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆

BGU

■ Nevo-Zimmer: G connected R_{rk}G ≥ 2. Then h_µ attains only finitely many values.

Theorem (Bowen)

For $G = F_2$ the image of h is an interval $[0, h_{max}]$.

Yair Glasner

Probability preserving actions

 $\blacksquare \ \Gamma = \langle S \rangle < \operatorname{GL}_n(F).$

No amenable normal subgroups.

No commuting normal subgroups.

Theorem (G)

There exits a free subgroup $F < \Gamma$ such that For every non-free p.m.p action $\Gamma \curvearrowright (X, \mathcal{B}, \mu)$

 $\blacksquare F \cdot x = \Gamma \cdot x, \qquad a.s.$

 $\blacksquare F \cap \Gamma_x \text{ is non-abelian free,} \qquad a.s.$

Yair Glasner

Invariant random subgroups and applications

BGU

・ロト ・回ト ・ヨト ・ヨト … ヨ

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

BGU

Tits alternative for IRS

 $\bullet \ \Gamma = \langle S \rangle < \operatorname{GL}_n(F).$

No amenable normal subgroups.

No commuting normal subgroups.

Theorem

There exits a free subgroup F < Γ such that For every IRS $\langle e \rangle \neq \Delta < \Gamma$

 $\bullet F\Delta = \Gamma, \qquad a.s.$

 $\blacksquare \Delta \cap \Gamma \text{ is non-abelian free,} \qquad a.s.$

Yair Glasner

Plan	IR	S	Essential	proof
_				

Essential subgroups

Definition (Essential subgroups)

Let $\Delta < \Gamma$ be an IRS. A subgroup $M < \Gamma$ is essential if $Pr\{M < \Delta\} \geqq 0$

Lemma

If $\Delta < \Gamma$ is an IRS in a countable group. Then Δ is a.s. locally essential.

Proof. Let $\Sigma_1, \Sigma_2, \ldots$ be the f.g. non-essential subgroups. $\{\Delta \in Sub(\Gamma) \mid \Delta \text{ is not loc. ess. }\} = \bigcup_i \{\Delta \in Sub(\Gamma) \mid \Delta > \Sigma_i\}$ and the right hand side is a countable union of null sets. \Box

Yair Glasner

Invariant random subgroups and applications

Plan	IRS	Essential	proof
Some ren	ⁿ theory		

Some rep" theory

We will assume from now on

- Γ < GL_{n+1}(k) with k local field. (Need something more general when Γ is not f.g.)
- **\square** Γ strongly irreducible on **P**(k^n)
- **H** = $\overline{\Gamma}^{Z}$ simple, with trivial center.
- \exists strongly proximal $g \in \Gamma$.

Definition

$$\begin{aligned} \mathcal{E}^{f,Sl} &= & \text{Stronly irreducible f.g. essential subgroups} \\ &= & \{\Sigma_1, \Sigma_2, \ldots\} \end{aligned}$$

Plan	IRS	Essential	proof

Two central propositions

Theorem

Every non-trivial IRS $\Delta < \Gamma$ contains some $\Sigma \in \mathcal{E}^{f,SI}$ a.s.

Theorem

There exits elements:

$$\{a(i,j,\gamma)\in \Gamma\mid i,j\in \mathbf{N},\gamma\in \Gamma\}$$

<ロ> <同> <同> < 回> < 回> < 回> = 三回

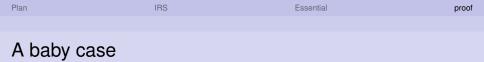
BGU

that

Freely generate a free group,

$$\bullet a(i,j,\gamma) \in \Sigma_i \gamma \Sigma_j$$

Yair Glasner



We will show: The IRS $\Delta < \Gamma$ a.s. contains an infinite ess. subgroup. Assume the contrary.

- In fact condition on all essential subgroups being finite.
- Δ is locally essential a.s. \Rightarrow locally finite a.s.
- $\Rightarrow \Delta$ has a finite orbit $Y = \{s_1, s_2, \dots, s_l\} \subset \mathbf{P}(k^n)$ a.s.
- $\lambda \in \Gamma$ essential element.
- **g** \in Γ very proximal element
- \bullet *v*, *H* attracting point and repelling hyperplane for *g*.

• w.l.o.g
$$Y \cap H_g = \emptyset$$
.

Yair Glasner

A baby case II

By Poincaré recurrence:

for almost all Δ with $\lambda \in \Delta$ we have $g^n \lambda g^{-n} \in \Delta$ for infinitely many *n*.

- For such subsequence $\lambda g^{n_m} Y = g^{n_m} Y$. But $g^{n_m} Y \rightarrow v$.
- Since λ , *g* are (almost) general. All essential elements are trivial.
- Hence Δ is trivial. \Box