Locally Compact, Totally Disconnected Contraction Groups

Helge Glöckner (Paderborn)

Locally Compact Groups Beyond Lie Theory (Spa, Belgium)

April 4, 2013

Objects of study:

G	topological group
$\alpha \colon G \to G$	contractive automorphism, i.e.
	$lpha^n(x) ightarrow {f 1}$ as $n ightarrow \infty$, $orall x \in G.$

Then call (G, α) a **contraction group**.

For G locally compact:

Fact (Siebert 1986). $G = G_1 \times N$, where $G_1 \subseteq G$ is the connected identity component and N a totally disconnected, α -stable normal subgroup (i.e., $\alpha(N) = N$).

Siebert also characterized the **connected** locally compact contraction groups

(simply connected nilpotent Lie groups admitting a positive graduation on the Lie algebra).

Now: Structure of **totally disconnected**, locally compact contraction groups

Throughout the talk, G will be locally compact and totally disconnected

Overview

- $\S1$ Examples of contraction groups
- §2 Classical facts by Siebert
- $\S3$ Existence of composition series
- §4 Main results (Classification of composition factors, Structure Theorem)
- $\S 5$ Proof of the classification
- $\S 6$ Outline of proof of the Structure Theorem
- $\S7$ Contractible Lie groups over local fields
- $\S\S$ 3–6: joint work with George A. Willis

$\S1$ Examples of contraction groups

Example 1 (right shift).

$$F \qquad \text{finite group} \\ G := F^{(-\mathbb{N})} \times F^{\mathbb{N}_0} \qquad F^{(-\mathbb{N})} := \bigoplus_{n \in -\mathbb{N}} F \text{ discrete,} \\ F^{\mathbb{N}_0} \text{ compact} \\ \alpha \colon G \to G \qquad \text{right shift,} \\ \alpha((x_n)_{n \in \mathbb{Z}}) \coloneqq (x_{n-1})_{n \in \mathbb{Z}}. \end{cases}$$

Then α is a contractive automorphism and hence (G, α) a contraction group.

Proof: Every 1-neighbourhood U of G contains $\mathbf{1} \times F^{\{k,k+1,\ldots\}}$ for some $k \in \mathbb{Z}$. Hence, for each $x \in G$, have $\alpha^n(x) \in U$ for large n.

Example 2 (Contractive linear automorphisms)

\mathbb{Q}_p	Field of <i>p</i> -adic numbers
	(tdlc)

- $E := (\mathbb{Q}_p)^k$ fin-dim \mathbb{Q}_p -vector space
- $\begin{array}{ll} \alpha \colon E \to E & \quad \text{lin automorphism s.t. } \|\alpha\|_{\mathsf{op}} < 1 \\ & \quad \text{for some norm on } E. \end{array}$

Then (E, α) is a contraction group

Example 3 (Contraction groups associated with arbitrary automorphisms)

Any automorphism α of a tdlc group G gives rise to a contraction group

$$U_{\alpha} := \{x \in G : \alpha^n(x) \to 1 \text{ as } n \to \infty\}.$$

If U_{α} is closed, then it is locally compact and thus $(U_{\alpha}, \alpha|_{U_{\alpha}})$ is a tdlc contraction group.

§2 Classical facts (Siebert)

If (G, α) is a tdlc contraction group, then:

- (a) There is a compact, open subgroup $W \subseteq G$ which is α -invariant (i.e., $\alpha(W) \subseteq W$). Thus $\cdots \supseteq \alpha^{-1}(W) \supseteq W \supseteq \alpha(W) \supseteq \alpha^{2}(W) \supseteq \cdots$
- (b) For W as before, $G = \bigcup_{n \in \mathbb{Z}} \alpha^{-n}(W)$ (For each $x \in G$, have $\alpha^n(x) \in W$ for some n, hence $x \in \alpha^{-n}(W)$) In particular, G is σ -compact.
- (c) The sets $\alpha^n(W)$ form a basis of identity neighbourhoods. Notably, G is metrizable.
- (d) If $G \neq \mathbf{1}$, then G is neither compact nor discrete
- (e) If $G \neq \mathbf{1}$, then the module $\Delta(\alpha^{-1})$ is an integer ≥ 2 .

\S **3** Existence of composition series

 (G, α) a tdlc contraction group

Observation (G./Willis).

The length n of each strictly ascending series

 $\mathbf{1} = G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_n = G$

of α -stable closed subgroups G_j of G is bounded by the number n_0 of prime factors of $\Delta(\alpha^{-1})$ (counted with multiplicities).

Hence there exist composition series of α -stable closed subgroups

(series which cannot be refined further).

Fact. Let G be a locally compact group and $\alpha \in \operatorname{Aut}(G)$. If $N \subseteq G$ is an α -stable closed normal subgroup and α' the automorphism of G/N induced by α , then

$$\Delta_G(\alpha) = \Delta_N(\alpha|_N) \cdot \Delta_{G/N}(\alpha').$$

Proof (for observation)

Let α_j be the automorphism of $Q_j := G_j/G_{j-1}$ induced by α . Then

$$\Delta_G(\alpha^{-1}) = \Delta_{Q_1}(\alpha_1^{-1}) \cdot \ldots \cdot \Delta_{Q_n}(\alpha_n^{-1}),$$

where each module is an integer \geq 2 \rightsquigarrow assertion.

Defn. A contraction group (G, α) is called **simple** if $G \neq \mathbf{1}$ and G does not have α -stable closed normal subgroups except for $\mathbf{1}$ and G.

Remark A series

$$\mathbf{1} = G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_n = G$$

of α -stable closed subgroups is a composition series if and only if all factors G_j/G_{j-1} are simple contraction groups (with respect to the automorphism induced by α).

Observation. Any simple contraction group (G, α) is either abelian or topologically perfect, i.e., $\overline{[G,G]} = G$. If G is abelian, then G is either torsion free or a torsion group of prime exponent.

Proof. $N := \overline{[G,G]}$ is an α -stable closed normal subgroup of G. Hence $N = \mathbf{1}$ or N = G. If G is abelian and $x^p = 1$ for some $x \neq 1$, then $\{g \in G : g^p = 1\}$ is a closed α -stable non-trivial subgroup and hence coincides with G. \Box

$\S 4$ Main results

Classification of the simple totally disconnected contraction groups

Theorem (G./Willis).

If (G, α) is a simple tdlc contraction group, then G is either a torsion group or torsion free. Classification:

- (a) If G is a torsion group, then (G, α) is isomorphic to $F^{(-\mathbb{N})} \times F^{\mathbb{N}_0}$ with the right shift, for some finite simple group F.
- (b) If G is torsion free, then (G, α) is isomorphic to $(\mathbb{Q}_p)^d$ with a \mathbb{Q}_p -linear contractive automorphism for which there are no invariant vector subspaces.

Conversely, all of these are simple.

The classification has consequences for the structure of arbitrary tdlc contraction groups (G, α)

Structure Theorem (G./Willis).

The set tor(G) of torsion elements and the set div(G) of divisible elements are fully invariant closed subgroups of G and

 $G = \operatorname{tor}(G) \times \operatorname{div}(G).$

Moreover, tor(G) has finite exponent and

$$\operatorname{div}(G) = G_{p_1} \times \cdots \times G_{p_n}$$

is a direct product of certain α -stable *p*-adic Lie groups G_p .

Remark. By J.S.P. Wang (1984), each G_p is nilpotent, and in fact the group of \mathbb{Q}_p -rational points of a unipotent linear algebraic group defined over \mathbb{Q}_p .

$\S 5$ Proof of the classification

Case (G, +) is abelian and a torsion group of prime exponent p:

Pick $1 \neq x$ and set $F := \langle x \rangle \cong C_p$. Then

$$F^{(-\mathbb{N})} \times F^{\mathbb{N}_0} \to G, \quad (x_n)_{n \in \mathbb{Z}} \mapsto \sum_{n=N}^{\infty} \alpha^n(x_n)$$

(with N so small that $x_n = 0$ for all n < N) defines a homomorphism of groups that intertwines the right shift and α (and can be shown to be a topological isomorphism)

To tackle the torsion-free case, need another basic tool for tdlc contraction groups (G, α) :

Tool 1 (G./Willis).

If $W \subseteq G$ is a closed subgroup with $\alpha(W) \subseteq W$, then

$$S := \bigcup_{n \in \mathbb{N}_0} \alpha^{-n}(W)$$

is an α -stable closed subgroup of G.

Hence, if G is simple, W normal and $W \neq \mathbf{1}$, then S = G and W is open in G. Classification if (G, +) is abelian and torsion free:

Let $W \subseteq G$ be a compact, open subgroup such that $\alpha(W) \subseteq W$. Then W can be chosen pro-p for some p.

[For some prime p, there exists a p-Sylow subgroup $P \neq \mathbf{1}$ of W, which is unique as W is abelian. Hence $\alpha(P) \subseteq P$ and thus, by Tool 1, P is open. Now replace W with P if necessary.]

For $0 \neq x \in W$, can define zx for $z \in \mathbb{Z}_p$. Let W(x) be the image of the continuous homomorphism

$$\phi \colon \mathbb{Z}_p^{\mathbb{N}_0} \to W, \quad (z_n)_{n \in \mathbb{N}_0} \mapsto \sum_{n \in \mathbb{N}_0} \alpha^n(z_n x).$$

Then W(x) is a compact, non-trivial α -invariant subgroup of G and hence open by Tool 1.

Being a torsion-free abelian pro-*p*-group, W(x) is isomorphic to \mathbb{Z}_p^J for some set J.

(This can be shown using Pontryagin duality). Since pW(x) = W(px) is open, $(p\mathbb{Z}_p)^J$ must be open in \mathbb{Z}_p^J , whence J is finite and $W(x) \cong \mathbb{Z}_p^J$ a p-adic Lie group.

Now a linearization argument shows that

 $(G, \alpha) \cong (L(G), L(\alpha)).$

Classification of non-abelian simple contraction groups uses a further tool:

Tool 2 (G./Willis).

If $W \subseteq G$ is a closed non-trivial subgroup with $\alpha(W) \subseteq W$, then its core

$$N := \bigcap_{g \in G} gWg^{-1}$$

is a non-trivial closed, α -invariant normal subgroup of G.

Tool 1 implies:

If G is simple, then N is open in G.

Case (G, α) simple, non-abelian

Have $gh \neq hg$ for suitable $g, h \in G$. By Tool 2, G has an α -invariant, compact, open, **normal** subgroup W. We may assume that $g \in W$ and choose $m \in \mathbb{N}$ so large that $hgh^{-1}g^{-1} \notin \alpha^m(W)$. Then $\pi(h) \neq 1$ for the permutation representation

 $\pi: G \to \operatorname{Sym}(W/\alpha^m(W)),$

 $\pi(x)(y\alpha^m(W)) := xyx^{-1}\alpha^m(W)$, and thus ker (π) is a proper closed normal subgroup of G of finite index. It is therefore contained in a maximal normal subgroup M. Then F := G/M is a finite simple group. Let $q: G \to G/M = F$ be the quotient map. One now verifies that

$$G \to F^{(-\mathbb{N})} \times F^{(\mathbb{N}_0)}, \quad x \mapsto (q(\alpha^{-n}(x)))_{n \in \mathbb{Z}}$$

is an isomorphism of topological groups which intertwines α and the right shift.

§6 Outline of proof for the Structure Theorem Know (G, α) admits a composition series

 $\mathbf{1} = G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_n = G.$

I. Easy case: If all factors G_j/G_{j-1} are torsion, then G is a torsion group (of finite exponent, and hence without divisible elements)

II. Not too hard: If all factors G_j/G_{j-1} are torsion-free and hence *p*-adic, then *G* is a direct product of *p*-adic Lie groups for some primes *p*, and is divisible.

III. The composition series can be chosen such that the torsion factors appear first.

Thus $tor(G) = G_k$ for some k and G/G_k is a product of p-adic Lie groups.

IV. Construct a complement for G_k .

$\S{7}$ Contractible Lie groups over local fields

 \mathbbm{K} a local field (tdlc, non-discrete)

An analytic Lie group G over \mathbb{K} is called **contractible** if it admits a contractive analytic automorphism $\alpha \colon G \to G$.

Theorem (G.) Let G be a contractible Lie group over a local field \mathbb{K} . If char(\mathbb{K}) > 0, then G is a torsion group.

Idea of proof. By the Structure Theorem, $G = tor(G) \times G_{p_1} \times \cdots \times G_{p_n}$ with *p*-adic Lie groups G_p . Show that each $G_p = \mathbf{1}$. \Box

As in the p-dic case (treated by Wang), always have:

Theorem (G.) Every contractible Lie group over a local field is nilpotent.

Analytic proof, which uses ideas from the theory of time-discrete, analytic **dynamical systems**:

Idea of proof: Let $\alpha \colon G \to G$ be contractive. For $a \in [0, 1]$, consider the *a*-contraction group U_a which comprises all $x \in G$ such that

$$\|\phi(\alpha^n(x))\| = o(a^n)$$

for large n, where ϕ is a chart for G around 1 with $\phi(1) = 0$ and ||.|| is a norm on the modelling space for G.

 U_a is a submanifold of G (for suitable a), a so-called a-stable manifold for the dynamical system (G, α) around the fixed point 1 (and a closed Lie subgroup; cf. G., Expo Math).

Since $[U_a, U_b] \subseteq U_{ab}$, one can find $a_1 < a_2 < \cdots < a_n$ such that

$$\mathbf{1} = U_{a_1} \subseteq U_{a_2} \subseteq \cdots \subseteq U_{a_n} = G$$

is an ascending central series for G. Hence G is nilpotent.

Remark The invariant manifolds just described can also be used to calculate the scale* $s_G(\alpha)$ of an analytic automorphism α of an analytic Lie group G over a local field, provided that U_{α} is closed (see G. [7, 8]).

The *p*-adic case is easier, because U_{α} is always closed here (see Wang) and the exponential function can be used to linearize the dynamical system. See [3] for the calculation of the scale in the *p*-adic case (and also for linear automorphisms of \mathbb{K}^n); for semisimple groups over local fields, see Baumgartner and Willis [1].

Remark Further general information on contraction groups can also be found in Baumgartner and Willis [1] (extended to non-metrizable groups by Jaworski [10], cf. [4]), including discussions of closedness of U_{α} . Compare also Müller-Römer [11]. Contraction groups of *p*-adic groups were also studied by Dani and Shah [2].

*In the sense of Willis [14, 15]

§8 Summary

Several results are now known about the structure of tdlc contraction groups (G, α) :

- *G* has a composition series;
- The composition factors are unique up to topological isomorphism and order;
- The possible composition factors can be classified;
- Structure Theorem:

 $G = \operatorname{tor}(G) \times \operatorname{div}(G) = \operatorname{tor}(G) \times G_{p_1} \times \cdots \times G_{p_n}$

• Application: Structure of contractible Lie groups over local fields (notably in positive characteristic)

References

- Baumgartner, U. and G. A. Willis, Contraction groups and scales of automorphisms of totally disconnected locally compact groups, Israel J. Math. 142 (2004), 221–248.
- Dani S. G. and R. Shah, Contraction subgroups and semistable measures on p-adic Lie groups, Math. Proc. Cambridge Philos. Soc. 110 (1991), 299– 306.
- 3. Glöckner, H., *Scale functions on p-adic Lie groups*, Manuscripta Math. **97** (1998), 205–215.
- Glöckner, H., Contraction groups for tidy automorphisms of totally disconnected groups, Glasgow Math. J. 47 (2005), 329–333.
- 5. Glöckner, H., *Contractible Lie groups over local fields*, Math. Z. **260** (2008), 889–904.
- 6. Glöckner, H., Invariant manifolds for analytic dynamical systems over ultrametric fields, Expo. Math., http://dx.doi.org/10.1016/j.exmath.2013.01.009 (cf. extended preprint version, arXiv:0808.2709v2)
- 7. Glöckner, H., *Lectures on Lie groups over local fields*, preprint, arXiv:0804.2234v3
- 8. Glöckner, H., *Automorphisms of Lie groups over local fields and associated invariant manifolds*, manuscript in preparation (based on unpublished parts of [7] and the extended preprint [6]).

- Glöckner, H. and G. A. Willis, Classification of the simple factors appearing in composition series of totally disconnected contraction groups, J. Reine Angew. Math. 634 (2010), 141–169.
- Jaworski, W., On contraction groups of automorphisms of totally disconnected locally compact groups, Israel J. Math. **172** (2009), 1–8.
- Müller-Römer, P. R., Kontrahierende Erweiterungen und kontrahierbare Gruppen, J. Reine Angew. Math. 283/284 (1976), 238–264.
- 12. Siebert, E., *Contractive automorphisms on locally compact groups*, Math. Z. **191** (1986), 73–90.
- 13. Wang, J. S. P., *The Mautner phenomenon for p-adic Lie groups*, Math. Z. **185** (1984), 403–412.
- Willis, G. A., The structure of totally disconnected, locally compact groups, Math. Ann. 300 (1994), 341–363.
- Willis, G. A., Further properties of the scale function on a totally dis- connected group, J. Algebra 237 (2001), 142–164.