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Objects of study:

G topological group

α : G→ G contractive automorphism, i.e.

αn(x)→ 1 as n→∞, ∀x ∈ G.

Then call (G,α) a contraction group.

For G locally compact:

Fact (Siebert 1986). G = G1 × N , where
G1 ⊆ G is the connected identity component
and N a totally disconnected, α-stable normal
subgroup (i.e., α(N) = N).

Siebert also characterized the connected locally
compact contraction groups

(simply connected nilpotent Lie groups admit-
ting a positive graduation on the Lie algebra).

Now: Structure of totally disconnected, locally
compact contraction groups

Throughout the talk, G will be locally compact

and totally disconnected
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§1 Examples of contraction groups

Example 1 (right shift).

F finite group

G := F (−N) × FN0 F (−N) :=
⊕
n∈−N

F discrete,

FN0 compact

α : G→ G right shift,

α((xn)n∈Z) := (xn−1)n∈Z.

Then α is a contractive automorphism and hence

(G,α) a contraction group.

Proof: Every 1-neighbourhood U of G contains

1×F {k,k+1,...} for some k ∈ Z. Hence, for each

x ∈ G, have αn(x) ∈ U for large n.



Example 2 (Contractive linear automorphisms)

Qp Field of p-adic numbers

(tdlc)

E := (Qp)k fin-dim Qp-vector space

α : E → E lin automorphism s.t. ‖α‖op < 1

for some norm on E.

Then (E,α) is a contraction group

Example 3 (Contraction groups associated with

arbitrary automorphisms)

Any automorphism α of a tdlc group G gives

rise to a contraction group

Uα := {x ∈ G : αn(x)→ 1 as n→∞}.

If Uα is closed, then it is locally compact and

thus (Uα, α|Uα) is a tdlc contraction group.



§2 Classical facts (Siebert)

If (G,α) is a tdlc contraction group, then:

(a) There is a compact, open subgroup W ⊆ G
which is α-invariant (i.e., α(W ) ⊆W ).

Thus · · · ⊇ α−1(W ) ⊇W ⊇ α(W ) ⊇ α2(W ) ⊇ · · ·

(b) For W as before, G =
⋃
n∈Zα

−n(W )

(For each x ∈ G, have αn(x) ∈W for some n, hence

x ∈ α−n(W ))

In particular, G is σ-compact.

(c) The sets αn(W ) form a basis of identity
neighbourhoods. Notably, G is metrizable.

(d) If G 6= 1, then G is neither compact nor
discrete

(e) If G 6= 1, then the module ∆(α−1) is an
integer ≥ 2.



§3 Existence of composition series

(G,α) a tdlc contraction group

Observation (G./Willis).

The length n of each strictly ascending series

1 = G0 � G1 � · · · � Gn = G

of α-stable closed subgroups Gj of G is bounded

by the number n0 of prime factors of ∆(α−1)

(counted with multiplicities).

Hence there exist composition series of α-stable

closed subgroups

(series which cannot be refined further).



Fact. Let G be a locally compact group and

α ∈ Aut(G). If N ⊆ G is an α-stable closed

normal subgroup and α′ the automorphism of

G/N induced by α, then

∆G(α) = ∆N(α|N) ·∆G/N(α′).

Proof (for observation)

Let αj be the automorphism of Qj := Gj/Gj−1

induced by α. Then

∆G(α−1) = ∆Q1
(α−1

1 ) · . . . ·∆Qn(α−1
n ),

where each module is an integer ≥ 2

; assertion. 2



Defn. A contraction group (G,α) is called
simple if G 6= 1 and G does not have α-stable
closed normal subgroups except for 1 and G.

Remark A series

1 = G0 � G1 � · · · � Gn = G

of α-stable closed subgroups is a composition
series if and only if all factors Gj/Gj−1 are sim-
ple contraction groups (with respect to the au-
tomorphism induced by α).

Observation. Any simple contraction group
(G,α) is either abelian or topologically perfect,
i.e., [G,G] = G. If G is abelian, then G is ei-
ther torsion free or a torsion group of prime
exponent.

Proof. N := [G,G] is an α-stable closed nor-
mal subgroup of G. Hence N = 1 or N = G.

If G is abelian and xp = 1 for some x 6= 1, then
{g ∈ G : gp = 1} is a closed α-stable non-trivial
subgroup and hence coincides with G. 2



§4 Main results

Classification of the simple totally disconnected contrac-

tion groups

Theorem (G./Willis).

If (G,α) is a simple tdlc contraction group,

then G is either a torsion group or torsion free.

Classification:

(a) If G is a torsion group, then (G,α) is iso-

morphic to F (−N)×FN0 with the right shift,

for some finite simple group F .

(b) If G is torsion free, then (G,α) is isomor-

phic to (Qp)d with a Qp-linear contractive

automorphism for which there are no in-

variant vector subspaces.

Conversely, all of these are simple.



The classification has consequences for the struc-

ture of arbitrary tdlc contraction groups (G,α)

Structure Theorem (G./Willis).

The set tor(G) of torsion elements and the set

div(G) of divisible elements are fully invariant

closed subgroups of G and

G = tor(G) × div(G) .

Moreover, tor(G) has finite exponent and

div(G) = Gp1 × · · · × Gpn

is a direct product of certain α-stable p-adic

Lie groups Gp.

Remark. By J.S.P. Wang (1984), each Gp is

nilpotent, and in fact the group of Qp-rational

points of a unipotent linear algebraic group

defined over Qp.



§5 Proof of the classification

Case (G,+) is abelian and a torsion group of
prime exponent p:

Pick 1 6= x and set F := 〈x〉 ∼= Cp. Then

F (−N) × FN0 → G, (xn)n∈Z 7→
∞∑

n=N

αn(xn)

(with N so small that xn = 0 for all n < N)
defines a homomorphism of groups that inter-
twines the right shift and α (and can be shown
to be a topological isomorphism)

To tackle the torsion–free case, need another
basic tool for tdlc contraction groups (G,α):

Tool 1 (G./Willis).

If W ⊆ G is a closed subgroup with α(W ) ⊆W ,
then

S :=
⋃

n∈N0

α−n(W )

is an α-stable closed subgroup of G.

Hence, if G is simple, W normal and W 6= 1,
then S = G and W is open in G.



Classification if (G,+) is abelian and torsion

free:

Let W ⊆ G be a compact, open subgroup such

that α(W ) ⊆W . Then W can be chosen pro-p

for some p.

[For some prime p, there exists a p-Sylow sub-

group P 6= 1 of W , which is unique as W is

abelian. Hence α(P ) ⊆ P and thus, by Tool 1,

P is open. Now replace W with P if necessary.]

For 0 6= x ∈ W , can define zx for z ∈ Zp. Let

W (x) be the image of the continuous homo-

morphism

φ : ZN0
p →W, (zn)n∈N0

7→
∑
n∈N0

αn(znx).

Then W (x) is a compact, non-trivial α-invariant

subgroup of G and hence open by Tool 1.



Being a torsion-free abelian pro-p-group, W (x)

is isomorphic to ZJp for some set J.

(This can be shown using Pontryagin duality).

Since pW (x) = W (px) is open, (pZp)J must be

open in ZJp , whence J is finite and W (x) ∼= ZJp
a p-adic Lie group.

Now a linearization argument shows that

(G,α) ∼= (L(G), L(α)).



Classification of non-abelian simple contrac-

tion groups uses a further tool:

Tool 2 (G./Willis).

If W ⊆ G is a closed non-trivial subgroup with

α(W ) ⊆W , then its core

N :=
⋂
g∈G

gWg−1

is a non-trivial closed, α-invariant normal sub-

group of G.

Tool 1 implies:

If G is simple, then N is open in G.



Case (G,α) simple, non-abelian

Have gh 6= hg for suitable g, h ∈ G. By Tool 2,

G has an α-invariant, compact, open, normal

subgroup W . We may assume that g ∈ W

and choose m ∈ N so large that hgh−1g−1 6∈
αm(W ). Then π(h) 6= 1 for the permutation

representation

π : G→ Sym(W/αm(W )),

π(x)(yαm(W )) := xyx−1αm(W ), and thus ker(π)

is a proper closed normal subgroup of G of fi-

nite index. It is therefore contained in a maxi-

mal normal subgroup M . Then F := G/M is a

finite simple group. Let q : G → G/M = F be

the quotient map. One now verifies that

G→ F (−N) × F (N0), x 7→ (q(α−n(x)))n∈Z

is an isomorphism of topological groups which

intertwines α and the right shift.



§6 Outline of proof for the Structure Theorem

Know (G,α) admits a composition series

1 = G0 � G1 � · · · � Gn = G.

I. Easy case: If all factors Gj/Gj−1 are torsion,

then G is a torsion group (of finite exponent,

and hence without divisible elements)

II. Not too hard: If all factors Gj/Gj−1 are

torsion-free and hence p-adic, then G is a direct

product of p-adic Lie groups for some primes

p, and is divisible.

III. The composition series can be chosen such

that the torsion factors appear first.

Thus tor(G) = Gk for some k and G/Gk is a

product of p-adic Lie groups.

IV. Construct a complement for Gk.



§7 Contractible Lie groups over local fields

K a local field (tdlc, non-discrete)

An analytic Lie group G over K is called
contractible if it admits a contractive analytic
automorphism α : G→ G.

Theorem (G.) Let G be a contractible Lie
group over a local field K. If char(K) > 0,
then G is a torsion group.

Idea of proof. By the Structure Theorem,
G = tor(G) × Gp1 × · · · × Gpn with p-adic Lie
groups Gp. Show that each Gp = 1. 2

As in the p-dic case (treated by Wang), always
have:

Theorem (G.) Every contractible Lie group
over a local field is nilpotent.

Analytic proof, which uses ideas from the theory
of time-discrete, analytic dynamical systems:



Idea of proof: Let α : G → G be contractive.

For a ∈ ]0,1], consider the a-contraction group

Ua which comprises all x ∈ G such that

‖φ(αn(x))‖ = o(an)

for large n, where φ is a chart for G around 1

with φ(1) = 0 and ‖.‖ is a norm on the mod-

elling space for G.

Ua is a submanifold of G (for suitable a), a

so-called a-stable manifold for the dynamical

system (G,α) around the fixed point 1

(and a closed Lie subgroup; cf. G., Expo Math).

Since [Ua, Ub] ⊆ Uab, one can find

a1 < a2 < · · · < an such that

1 = Ua1 ⊆ Ua2 ⊆ · · · ⊆ Uan = G

is an ascending central series for G. Hence G

is nilpotent.



Remark The invariant manifolds just described can also

be used to calculate the scale∗ sG(α) of an analytic au-

tomorphism α of an analytic Lie group G over a local

field, provided that Uα is closed (see G. [7, 8]).

The p-adic case is easier, because Uα is always closed

here (see Wang) and the exponential function can be

used to linearize the dynamical system. See [3] for the

calculation of the scale in the p-adic case (and also for

linear automorphisms of Kn); for semisimple groups over

local fields, see Baumgartner and Willis [1].

Remark Further general information on contraction groups

can also be found in Baumgartner and Willis [1] (ex-

tended to non-metrizable groups by Jaworski [10], cf.

[4]), including discussions of closedness of Uα. Compare

also Müller-Römer [11]. Contraction groups of p-adic

groups were also studied by Dani and Shah [2].

∗In the sense of Willis [14, 15]



§8 Summary

Several results are now known about the struc-

ture of tdlc contraction groups (G,α):

• G has a composition series;

• The composition factors are unique up to

topological isomorphism and order;

• The possible composition factors can be

classified;

• Structure Theorem:

G = tor(G)×div(G) = tor(G)×Gp1×· · ·×Gpn

• Application: Structure of contractible Lie

groups over local fields (notably in positive

characteristic)
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