Finitely presented groups with infinitely many asymptotic cones

Abderezak Ould Houcine (Joint work with D. Osin)

ICJ, Université Lyon 1

Locally compact groups beyond Lie theory April, 2013

Definition

Let

- μ a non principal ultrafilter;
- $\hat{X}=\left(X_{n}, d_{n}\right)_{n \in \mathbb{N}}$ a sequence of metric spaces;

■ $\hat{e}=\left(e_{n}\right)_{n \in \mathbb{N}}$ a sequence of points with $e_{n} \in X_{n}$.
Set

$$
\mathcal{F}=\left\{\left(x_{n}\right)_{n \in \mathbb{N}}, x_{n} \in X_{n} \mid \exists c, \text { s.t. } d_{n}\left(e_{n}, x_{n}\right) \leq c, \forall n \in \mathbb{N}\right\}
$$

$\left(x_{n}\right) \sim\left(y_{n}\right)$ iff $\lim _{\mu} d_{n}\left(x_{n}, y_{n}\right)=0, \quad d_{\mu}\left(\left(x_{n}\right),\left(y_{n}\right)\right)=\lim _{\mu} d_{n}\left(x_{n}, y_{n}\right)$.
Then $\left(\mathcal{F} / \sim, d_{\mu}\right)$ is a metric space called the ultralimit of the sequence \hat{X} relative to μ, \hat{e}.

Definition

Let G be a group with a finite generating set S and $\left(C_{G}(S), d\right)$ the Cayley graph of G with respect to S. Let

- μ a non principal ultrafilter;
- $\hat{\lambda}=\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ a sequence of non negative real numbers with $\lim _{\mu} \lambda_{n}=+\infty$;
■ $\hat{e}=\left(e_{n}\right)_{n \in \mathbb{N}}$ a sequence of points of $C_{G}(S)$.
The ultralimit of $\hat{X}=\left(C_{G}(S), d / \lambda_{n}\right)_{n \in \mathbb{N}}$ relative to $\mu, \hat{\lambda}$ and \hat{e} is called the asymptotic cone of G relative to $\mu, \hat{\lambda}$ and \hat{e} and it is denoted by $\operatorname{Con}^{\mu}(G, \hat{\lambda})$.

Remarks

- $\operatorname{Con}^{\mu}(G, \hat{\lambda})$ is independent on the choice of the generating set S : if S_{1} and S_{2} are two finite generating sets of G then the corresponding asymptotic cones are bi-Lipschitz isomorphic.
- $\operatorname{Con}^{\mu}(G, \hat{\lambda})$ is also independent on the choice of \hat{e} : if \hat{e}_{1} and \hat{e}_{2} are two sequences of G then the corresponding asymptotic cones are homeomorphic.
Hence we fix S and we take $\hat{e}=\left(e_{n}\right)_{n \in \mathbb{N}}$ to be the sequence with $e_{n}=1$ for all $n \in \mathbb{N}$.

Roughly speaking:

Geometric properties of asymptotic cones of G §

Algebraic properties of G

- G is hyperbolic iff every asymptotic cone of G is a real tree.

■ G is virtually nilpotent iff every asymptotic cone of G is proper.

- If some asymptotic cone of G has cut points then an ultrapower of G contains a non abelian free group.

Question (Gromov, 1993): Is there a finitely generated (finitely presented) group with 2 non-homeomorphic asymptotic cones?

Theorem (Thomas-Velicovic, 2000)

There exists a finitely generated group with 2 non-homeomorphic asymptotic cones.

Theorem (Drutu-Sapir, 2005)

There exists a finitely generated group with $2^{\aleph_{0}}$ pairwise non-homeomorphic asymptotic cones.

Theorem (Kramer-Shelah-Tent-Thomas, 2005)

There exists a finitely presented group G such that:

- If CH holds then G has a unique asymptotic cone, up to homeomorphisms,
- If CH fails then G has $2^{2^{N_{0}}}$ asymptotic cones, up to homeomorphisms.

Theorem (Ol'Sahnskii-Sapir, 2007)

There exists a finitely presented group with 2 non-homeomorphic asymptotic cones.

Theorem (Osin-O., 2011)

There exists a finitely presented group H such that
■ H has infinitely many asymptotic cones up to homeomorphisms.

- There exists $\hat{a}=\left(a_{n}\right)$ and $\hat{b}=\left(b_{n}\right)$ such that for any μ, $\operatorname{Con}^{\mu}(H, \hat{a})$ has cut points while $\operatorname{Con}^{\mu}(H, \hat{b})$ does not.

Definition

Let X be a path-connected topological space. The connectivity degree of X, denoted $C(X)$, is defined by
$C(X)=\min \{|D| \mid D$ is finite and $X \backslash D$ is not path-connected $\}$
if at least one of such D exists, otherwise $C(X)=\infty$.
Remark. $\quad X$ has cut points iff $C(X)=1$.

Theorem (Ol'Shanskii-Osin-Sapir, 2008)

Let G be a finitely generated group and N a central subgroup of G. Suppose that $\left.\operatorname{Con}^{\mu}(N, \hat{\lambda})\right)$ has exactly m points. Then

$$
c\left(\operatorname{Con}^{\mu}(G, \hat{\lambda})\right)=m \times c\left(\operatorname{Con}^{\mu}(G / N, \hat{\lambda})\right.
$$

Suppose that we have found a finitely presented group H and a sequence of sequences $\hat{\lambda}_{i}$ such that:

■ Con $\left.^{\mu}\left(Z(H), \hat{\lambda}_{i}\right)\right)$ has exactly m_{i} points;
■ $H / Z(H)$ is constricted; that is any asymptotic cone of $H / Z(H)$ has cut points, in other words for any μ, for any $\hat{\lambda}$, $c\left(\operatorname{Con}^{\mu}(H / Z(H), \hat{\lambda})\right)=1$.
Then, by the previous theorem, $c\left(\operatorname{Con}^{\mu}\left(H, \hat{\lambda}_{i}\right)\right)=m_{i}$ and thus $\operatorname{Con}^{\mu}\left(H, \hat{\lambda}_{i}\right)$ is not homeomorphic to $\operatorname{Con}^{\mu}\left(H, \hat{\lambda}_{j}\right)$ whenever $m_{i} \neq m_{j}$.

Theorem (O., 2003)

Every recursively presented group G embeds in a finitely presented group Γ such that $Z(G)=Z(\Gamma)$.

Theorem

Let G be a recursively presented group. Then G embeds in a finitely presented group Γ such that:

■ $Z(G)=Z(\Gamma)$.
■ $\forall g \in G, \sqrt{|g|_{G}} \leq|g|_{\Gamma} \leq|g|_{G}$.
$■ \Gamma / Z(\Gamma)$ is constricted.

Let $\alpha: \mathbb{N}^{2} \rightarrow \mathbb{N}$ be a recursive bijection and $\alpha_{1}(m)=j$ whenever $m=\alpha(j, n)$.
Let $\left(p_{j}\right)_{j \in \mathbb{N}}$ be a recursively enumerable sequence of primes and set

$$
k_{n}=p_{\alpha_{1}(n)}
$$

Let $\left(R_{n}\right)_{n \in \mathbb{N}}$ be a recursively enumerable sequence of $F=\langle a, b \mid\rangle$ satisfying $C^{\prime}(1 / 25)$ (and some technical conditions).
Let

$$
G=\left\langle a, b \mid R_{n}^{k_{n}}=\left[R_{n}, a\right]=\left[R_{n}, b\right]=1, n \in \mathbb{N}\right\rangle .
$$

Then

- G is recursively presented.

■ $Z(G)=\left\langle R_{n}, n \in \mathbb{N}\right\rangle$.

Embeds G in a finitely presented group Γ as in the previous theorem. In particular we have

$$
\begin{gathered}
Z(G)=Z(\Gamma) \\
c\left(\operatorname{Con}^{\mu}(\Gamma / Z(\Gamma), \hat{\lambda})\right)=1, \forall \mu, \forall \hat{\lambda} \\
\forall g \in G, \sqrt{|g|_{G}} \leq|g|_{\Gamma} \leq|g|_{G}
\end{gathered}
$$

Lemma

For $j \in \mathbb{N}$ let $\hat{r}_{j}=\left(r_{n}^{j}\right)_{n \in \mathbb{N}}$

$$
r_{n}^{j}=\left|R_{\alpha(j, n)}\right| \Gamma .
$$

Then $\forall \mu$, $\operatorname{Con}^{\mu}\left(Z(\Gamma), \hat{r}_{j}\right)$ consist exactly of p_{j} points.

Proof (Idea).

- The order of $R_{\alpha(j, n)}$ is p_{j}.
- If $\left(g_{n}\right)^{\mu} \neq(1)^{\mu}, g_{n}=R_{1}^{\varepsilon_{1}} \cdots R_{i_{n}}^{\epsilon_{i_{n}}}$, then $\left(g_{n}\right)^{\mu}=\left(R_{i_{n}}^{\varepsilon_{i n}}\right)^{\mu}$.
- $i_{n}=\alpha(j, n)$ for μ-almost n and $\exists s, 1 \leq s \leq p_{j}$ s.t. $\left(g_{n}\right)^{\mu}=\left(R_{\alpha(j, n)}^{s}\right)^{\mu}$.

Conclusion:

- $c\left(\operatorname{Con}^{\mu}\left(\Gamma, \hat{r}^{j}\right)\right)=p_{j}$,
- if $p_{i} \neq p_{j}$ then $\operatorname{Con}^{\mu}\left(\Gamma, \hat{r}^{i}\right)$ is not homeomorphic to $\operatorname{Con}^{\mu}\left(\Gamma, \hat{r}^{j}\right)$.

Lemma

Let $\hat{d}=\left(d_{n}\right)_{n \in \mathbb{N}}$

$$
d_{n}=n k_{n}\left\|R_{n}\right\| .
$$

Then for any $\mu, \operatorname{Con}^{\mu}(Z(\Gamma), \hat{d})$ consists of exactly 1 point.
Conclusion: $c\left(\operatorname{Con}^{\mu}(\Gamma, \hat{d})\right)=1$.

THANKS

