Finitely presented groups with infinitely many asymptotic cones

Abderezak Ould Houcine (Joint work with D. Osin)

ICJ, Université Lyon 1

Locally compact groups beyond Lie theory April, 2013

Definition

Let

- μ a non principal ultrafilter;
- $\hat{X} = (X_n, d_n)_{n \in \mathbb{N}}$ a sequence of metric spaces;
- $\hat{e} = (e_n)_{n \in \mathbb{N}}$ a sequence of points with $e_n \in X_n$.

Set

$$\mathcal{F} = \{(x_n)_{n\in\mathbb{N}}, x_n\in X_n\mid \exists c, \text{ s.t. } d_n(e_n, x_n)\leq c, \forall n\in\mathbb{N}\},$$

 $(x_n) \sim (y_n)$ iff $\lim_{\mu} d_n(x_n, y_n) = 0$, $d_{\mu}((x_n), (y_n)) = \lim_{\mu} d_n(x_n, y_n)$. Then $(\mathcal{F}/\sim, d_{\mu})$ is a metric space called the ultralimit of the sequence \hat{X} relative to μ, \hat{e} .

Definition

Let G be a group with a finite generating set S and $(C_G(S), d)$ the Cayley graph of G with respect to S. Let

- μ a non principal ultrafilter;
- λ̂ = (λ_n)_{n∈ℕ} a sequence of non negative real numbers with lim_μ λ_n = +∞;

•
$$\hat{e} = (e_n)_{n \in \mathbb{N}}$$
 a sequence of points of $C_G(S)$.

The ultralimit of $\hat{X} = (C_G(S), d/\lambda_n)_{n \in \mathbb{N}}$ relative to μ , $\hat{\lambda}$ and \hat{e} is called the asymptotic cone of G relative to μ , $\hat{\lambda}$ and \hat{e} and it is denoted by $Con^{\mu}(G, \hat{\lambda})$.

Remarks

- Con^μ(G, λ̂) is independent on the choice of the generating set
 S: if S₁ and S₂ are two finite generating sets of G then the corresponding asymptotic cones are bi-Lipschitz isomorphic.
- Con^μ(G, λ̂) is also independent on the choice of ê: if ê₁ and ê₂ are two sequences of G then the corresponding asymptotic cones are homeomorphic.

Hence we fix S and we take $\hat{e} = (e_n)_{n \in \mathbb{N}}$ to be the sequence with $e_n = 1$ for all $n \in \mathbb{N}$.

Roughly speaking:

Geometric properties of asymptotic cones of G

\$

Algebraic properties of G

- *G* is hyperbolic iff every asymptotic cone of *G* is a real tree.
- *G* is virtually nilpotent iff every asymptotic cone of *G* is proper.
- If some asymptotic cone of G has cut points then an ultrapower of G contains a non abelian free group.

Question (Gromov, 1993): Is there a finitely generated (finitely presented) group with 2 non-homeomorphic asymptotic cones?

Theorem (Thomas-Velicovic, 2000)

There exists a finitely generated group with 2 non-homeomorphic asymptotic cones.

Theorem (Drutu-Sapir, 2005)

There exists a finitely generated group with 2^{\aleph_0} pairwise non-homeomorphic asymptotic cones.

Theorem (Kramer-Shelah-Tent-Thomas, 2005)

There exists a finitely presented group G such that:

- If CH holds then G has a unique asymptotic cone, up to homeomorphisms,
- If CH fails then G has 2^{2^{ℵ0}} asymptotic cones, up to homeomorphisms.

Theorem (Ol'Sahnskii-Sapir, 2007)

There exists a finitely presented group with 2 non-homeomorphic asymptotic cones.

Theorem (Osin-O., 2011)

There exists a finitely presented group H such that

- H has infinitely many asymptotic cones up to homeomorphisms.
- There exists â = (a_n) and b̂ = (b_n) such that for any μ, Con^μ(H, â) has cut points while Con^μ(H, b̂) does not.

Definition

Let X be a path-connected topological space. The connectivity degree of X, denoted C(X), is defined by

 $C(X) = \min\{|D| \mid D \text{ is finite and } X \setminus D \text{ is not path-connected}\}$

if at least one of such D exists, otherwise $C(X) = \infty$.

Remark. X has cut points iff C(X) = 1.

Theorem (Ol'Shanskii-Osin-Sapir, 2008)

Let G be a finitely generated group and N a central subgroup of G. Suppose that $Con^{\mu}(N, \hat{\lambda})$ has exactly m points. Then

$$c(Con^{\mu}(G,\hat{\lambda})) = m \times c(Con^{\mu}(G/N,\hat{\lambda})).$$

Suppose that we have found a finitely presented group H and a sequence of sequences $\hat{\lambda}_i$ such that:

- $\operatorname{Con}^{\mu}(Z(H), \hat{\lambda}_i))$ has exactly m_i points;
- H/Z(H) is constricted; that is any asymptotic cone of H/Z(H) has cut points, in other words for any μ , for any $\hat{\lambda}$, $c(\operatorname{Con}^{\mu}(H/Z(H), \hat{\lambda})) = 1$.

Then, by the previous theorem, $c(\operatorname{Con}^{\mu}(H, \hat{\lambda}_i)) = m_i$ and thus $\operatorname{Con}^{\mu}(H, \hat{\lambda}_i)$ is not homeomorphic to $\operatorname{Con}^{\mu}(H, \hat{\lambda}_j)$ whenever $m_i \neq m_j$.

Theorem (O., 2003)

Every recursively presented group G embeds in a finitely presented group Γ such that $Z(G) = Z(\Gamma)$.

Theorem

Let G be a recursively presented group. Then G embeds in a finitely presented group Γ such that:

$$Z(G) = Z(\Gamma).$$

•
$$\forall g \in G, \sqrt{|g|_G} \leq |g|_{\Gamma} \leq |g|_G.$$

• $\Gamma/Z(\Gamma)$ is constricted.

Let $\alpha : \mathbb{N}^2 \to \mathbb{N}$ be a recursive bijection and $\alpha_1(m) = j$ whenever $m = \alpha(j, n)$. Let $(p_j)_{j \in \mathbb{N}}$ be a recursively enumerable sequence of primes and set

$$k_n = p_{\alpha_1(n)}$$

Let $(R_n)_{n\in\mathbb{N}}$ be a recursively enumerable sequence of $F = \langle a, b | \rangle$ satisfying C'(1/25) (and some technical conditions). Let

$$G = \langle a, b \mid R_n^{k_n} = [R_n, a] = [R_n, b] = 1, \ n \in \mathbb{N} \rangle.$$

Then

- *G* is recursively presented.
- $Z(G) = \langle R_n, n \in \mathbb{N} \rangle.$

Embeds G in a finitely presented group Γ as in the previous theorem. In particular we have

$$Z(G) = Z(\Gamma)$$

$$c(\mathsf{Con}^\mu(\mathsf{\Gamma}/Z(\mathsf{\Gamma}),\hat{\lambda}))=1,orall\mu,orall\hat{\lambda})$$

$$\forall g \in G, \sqrt{|g|_G} \leq |g|_{\mathsf{F}} \leq |g|_{\mathsf{F}}$$

Lemma

For $j \in \mathbb{N}$ let $\hat{r}_j = (r_n^j)_{n \in \mathbb{N}}$

$$r_n^j = |R_{\alpha(j,n)}|_{\Gamma}.$$

Then $\forall \mu$, $Con^{\mu}(Z(\Gamma), \hat{r}_j)$ consist exactly of p_j points.

Proof (Idea).

The order of $R_{\alpha(j,n)}$ is p_j .
If $(g_n)^{\mu} \neq (1)^{\mu}$, $g_n = R_1^{\varepsilon_1} \cdots R_{i_n}^{\varepsilon_{i_n}}$, then $(g_n)^{\mu} = (R_{i_n}^{\varepsilon_{i_n}})^{\mu}$. $i_n = \alpha(j, n)$ for μ -almost n and $\exists s, 1 \leq s \leq p_j$ s.t. $(g_n)^{\mu} = (R_{\alpha(j,n)}^s)^{\mu}$.

Conclusion:

•
$$c(\operatorname{Con}^{\mu}(\Gamma, \hat{r}^{j})) = p_{j}$$
,

• if $p_i \neq p_j$ then $\operatorname{Con}^{\mu}(\Gamma, \hat{r}^i)$ is not homeomorphic to $\operatorname{Con}^{\mu}(\Gamma, \hat{r}^j)$.

Lemma

Let $\hat{d} = (d_n)_{n \in \mathbb{N}}$

$$d_n = nk_n ||R_n||.$$

Then for any μ , $Con^{\mu}(Z(\Gamma), \hat{d})$ consists of exactly 1 point.

Conclusion: $c(\operatorname{Con}^{\mu}(\Gamma, \hat{d})) = 1.$

Finitely presented groups with infinitely many asymptotic cones

THANKS