Simple Groups of Automorphisms of Trees

Christopher Banks, Murray Elder & George Willis

University of Newcastle, Australia

Abstract



Groups of automorphisms of trees $G < Aut(\mathcal{T})$ are investigated and results proved about their simplicity by Jacques Tits [5]; these results used an Independence Property (P). We describe methods of constructing groups acting on trees with slightly weaker properties, and use this framework to prove similar simplicity results.

The k-closure of G

Let \mathcal{T} be a tree and \mathbf{G} a group acting on \mathcal{T} . Let $\mathbf{B}(\mathbf{v}, \mathbf{k})$ denote the closed ball (with respect to the standard metric on \mathcal{T}) of radius \mathbf{k} centred at the vertex $v \in V(\mathcal{T})$. Then for each $k \in \mathbb{N}$, define the *k*-closure of **G** to be

 $\boldsymbol{G}^{(k)} = \left\{ \alpha \in \operatorname{Aut}(\mathcal{T}) \mid \forall \boldsymbol{v} \in \boldsymbol{V}(\mathcal{T}), \exists \boldsymbol{g} \in \boldsymbol{G} \text{ such that } \boldsymbol{g}|_{\boldsymbol{B}(\boldsymbol{v},\boldsymbol{k})} = \alpha|_{\boldsymbol{B}(\boldsymbol{v},\boldsymbol{k})} \right\}.$

• $G^{(k+1)} < G^{(k)} < Aut(\mathcal{T})$ for all **k**. • $G^{(k)}$ is closed and $\bigcap G^{(k)} = \overline{G}$, the closure of G. • The orbits $G^{(k)}$.v = G.v are equal for all vertices v. • Two subgroups G, H satisfy $G^{(k)} = H^{(k)}$ if for all $v \in V(\mathcal{T})$ we have

 $\operatorname{Stab}_{G} v|_{B(v,k)} = \operatorname{Stab}_{H} v|_{B(v,k)}$ and $G.v = H.v = (G \cap H).v$.

Let $G \leq Aut(\mathcal{T})$, fix $k \in \mathbb{N}$ and suppose that G does not leave invariant any proper subtree of \mathcal{T} . Then $\mathbf{G}^{(k)}$ is non-discrete if and only if there is $(v, w) \in E(\mathcal{T})$ and $g \in G$ such that

 $g|_{B(v,k)\cap B(w,k)} = 1 \text{ and } g|_{B(w,k)} \neq 1.$

Examples

• Each $G^{(1)}$ contains any group acting with the same orbits and the same local actions as G. If G is vertex-transitive and locally transitive (in which case) \mathcal{T} is regular), the *universal group* construction [2] fully describes the structure of $G^{(1)}$.

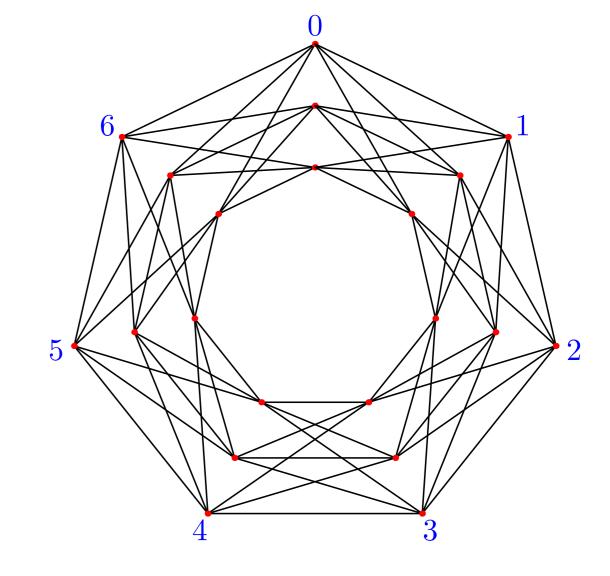
• All 7 vertex-transitive locally transitive discrete groups acting on \mathcal{T}_3 [3] satisfy $G^{(3)} = G$, and in 3 of these cases $G^{(2)} \neq G$.

• When all k-closures of G are distinct, as is the case for $G = PSL(2, \mathbb{Q}_p)$ acting on \mathcal{T}_{p+1} , they form an infinite descending series of subgroups whose intersection is **G**.

Example: Automorphism groups of graphs

Let Γ be any graph with universal covering tree \mathcal{T} . Then $\pi_1(\Gamma)$ acts naturally on \mathcal{T} and there exists $G < Aut(\mathcal{T})$ forming the exact sequence

 $\pi_1(\Gamma) \hookrightarrow \boldsymbol{G} \twoheadrightarrow \operatorname{Aut}(\Gamma).$



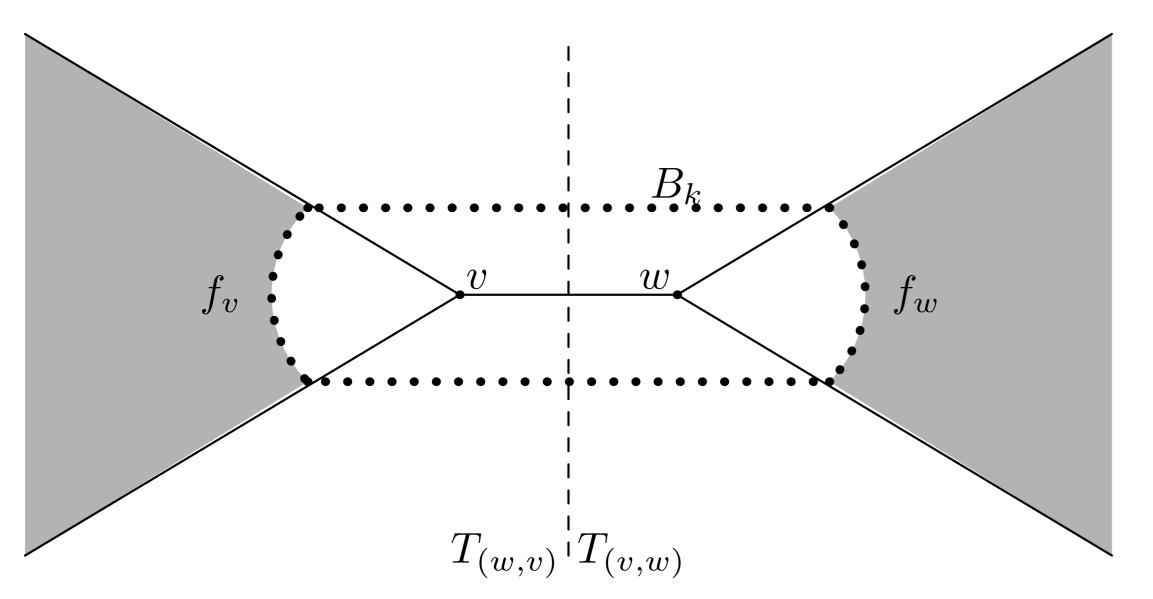
For Γ a finite graph, G is a discrete subgroup of $G^{(k)}$, and $G^{(k)} = G$ for all $k \ge \text{diam}(\Gamma)$. The graph C(p, r, 1) [4] on the right, has vertex set $\{(i, k) : i \in \mathbb{Z}_r, 1 \leq j \leq p\}$ and adjacency (i, k) (j, l) iff $j = i \pm 1$. Here the k-closure of $G_{p,r}$ is non-discrete for all $k < \frac{r}{2}$. For distinct r, s the k-closures of $G_{p,r}$ and $G_{p,s}$ are the same for all $k < \frac{r}{2}, k < \frac{s}{2}$.

Figure: The graph *C*(3, 7, 1)

The Independence Properties: generalising the work of Tits

Definition (Property (*P*^{*k*}**))**

Suppose $G < Aut(\mathcal{T})$ and fix $k \in \mathbb{N}$. For any edge $\{v, w\}$, let $\mathcal{T}_{(v,w)}$ denote the semitree of \mathcal{T} containing w but not $\{v, w\}$, and \mathcal{B}_k be the vertex set $B(v,k) \cap B(w,k)$. Let $F := \text{Fix}_{G}(\mathcal{B}_{k})$ be the subgroup of G fixing \mathcal{B}_{k} . Then G satisfies Property (P^{k}) if $F \cong \text{Fix}_{F}(\mathcal{T}_{(v,w)})$ Fix $_{F}(\mathcal{T}_{(w,v)})$ for all edges.



Simplicity Theorem

Let $G < Aut(\mathcal{T})$ be closed, fix $k \in \mathbb{N}$ and let G^{+k} denote the group generated by automorphisms in $Fix_{G}(\mathcal{B}_{k})$ for any edge of \mathcal{T} . Suppose that **G** satisfies Property (P^k) and does not stabilise a proper non-empty subtree or an end of \mathcal{T} . Then every nontrivial subgroup of **G** normalised by G^{+k} contains G^{+k} ; in particular G^{+k} is simple or trivial.

Figure: Property (P^k); f_v fixes $\mathcal{T}_{(v,w)}$ and f_w fixes $\mathcal{T}_{(w,v)}$. Both act independently of each other, and any $f \in Fix_{G}(\mathcal{B}_{k})$ splits into some product $f_{v}f_{w}$.

Properties of Properties (P^k)

• (P¹) is equivalent to Independence Property (P) [5]. • Property (P^k) implies Property (P^j) for all j > k. • $G^{(k)}$ has Property (P^k), and $H^{(k)} = \overline{H}$ iff H has Property (P^k).

References

C. Banks, M. Elder, & G. Willis, (2013) in preparation. ■ M. Burger & S. Mozes, *PHIMES* **92** (2000), 113–150. ■ M. Conder & P. Lorimer *J. Comb Theory B* **47** (1989), 60–72. A. Gardiner & C. E. Praeger, *Europ. J. Combinatorics*, **15** (1994), 383–397. J. Tits, In *Essays on topology and related topics*, 188–211, Springer Verlag, 1970.

Simple Groups of Automorphisms of Trees

Christopher.Banks@newcastle.edu.au