Gelfand pairs for locally compact groups acting on Euclidean buildings

Pierre-Emmanuel Caprace and Corina Ciobotaru

Université catholique de Louvain, Belgium

Abstract

Let **G** be a locally compact group acting properly by type-preserving automorphisms on a Euclidean building Δ , and \mathbf{G}_{x_0} be the stabilizer of a special vertex $\mathbf{x}_0 \in \Delta$. It is known that (G, G_{x_0}) is a Gelfand pair as soon as G acts strongly transitively on Δ ; this is in particular the case when G is a semi-simple group over a local field. We show a converse to this statement, namely: if (G, G_{x_0}) is a Gelfand pair and G acts cocompactly on Δ , then the action is strongly transitive. The proof uses the existence of strongly regular elements in G and their peculiar dynamics on the spherical building at infinity.

Introductory main definitions

 \blacktriangleright We say **G** acts **strongly transitively** on Δ (resp. $\partial \Delta$) if for every two pairs (A, C_1) and (B, C_2) , with A, B two apartments in Δ (resp. $\partial \Delta$)

Fundamental equivalence

 \triangleright '**G** acts strongly transitively on $\Delta' \implies$ '**G** acts strongly transitively on $\partial \Delta$ ' is well known;

- and C_1, C_2 two chambers with $C_1 \in Ch(A)$ and $C_2 \in Ch(B)$, there exists $\mathbf{g} \in \mathbf{G}$ such that $\mathbf{g}(\mathbf{B}) = \mathbf{A}$ and $\mathbf{g}(\mathbf{C}_2) = \mathbf{C}_1$;
- For a l.c. group **G** and $\mathbf{K} < \mathbf{G}$ compact let $\mathbf{C}_{c}^{\mathsf{K}}(\mathbf{G})$ be the set of all compact supported, K-bi-invariant continuous, complex-valued functions on **G** endowed with the convolution product.

The pair (G, K) is said to be **Gelfand** if the convolution algebra $C_c^{K}(G)$ is commutative.

Main Theorem

- Let Δ be a locally finite thick Euclidean building and $\mathbf{x}_0 \in \Delta$ be a special vertex. Let **G** be a closed, non-compact, type-preserving subgroup of $\operatorname{Aut}(\Delta)$ without fixed point in $\partial \Delta$. Then the following are equivalent:
- i) **G** acts strongly transitively on Δ ;
- ii) **G** acts strongly transitively on $\partial \Delta$;
- iii) the **G**-action on Δ is cocompact and there exists an apartment **A** of Δ such that for every $c \in Ch(\partial A)$ the subgroup $G_c \subseteq G$ has the property that $\mathbf{G}/\mathbf{G}_{\mathbf{c}}$ is compact;
- iv) the **G**-action on Δ is cocompact and there exists a compact open subgroup K < G having a finite number of chamber-orbits on $\partial \Delta$;
- v) **G**-action on Δ is cocompact and (G, G_{x_0}) is a Gelfand pair.

Université

catholique

de Louvain

- \triangleright '**G** acts strongly transitively on $\partial \Delta' \implies$ '**G** acts strongly transitively on Δ' Sketch:
 - \triangleright every apartment in Δ has cocompact stabilizer in **G**;
- ▷ 'Geometric' Levi decomposition: For every pair **c**, **c**' of opposite chambers in $Ch(\partial \Delta)$, we have $G_c = G_{c,c'} \cdot G_c^0$. In particular G_c^0 is transitive on the set of chambers opposite **c**;
- \triangleright criterion of strong transitivity on Δ .

Remark: The fundamental equivalence is used to prove ii) \iff iii) \iff iv) in the main Theorem.

Sketch of proof v) \implies ii)

- Suppose '**G** is not strongly transitive on $\partial \Delta$ '. Steps to follow:
- \blacktriangleright the number of $\mathbf{G}_{\mathbf{x}_0}$ -chamber-orbits in $\partial \mathbf{\Delta}$ is infinite;
- \triangleright construct two $\mathbf{a} \neq \mathbf{b}$ non- $\mathbf{G}_{\mathbf{x}_0}$ -conjugate strongly regular hyperbolic elements in **G**;
- apply the dynamics of strongly regular elements to obtain 'good' powers of **a** and **b** and 'good' properties;
- ► define $\mathbf{f} := \mathbf{1}_{G_{x_0}a^mG_{x_0}}, \mathbf{g} := \mathbf{1}_{G_{x_0}b^nG_{x_0}} \in \mathbf{C}_{\mathbf{c}}^{G_{x_0}}(\mathbf{G})$, for $\mathbf{n}, \mathbf{m} > \mathbf{0}$ 'good' powers founded above;

Key ingredients in the proof

- existence of strongly regular hyperbolic elements and their dynamics on the spherical building $\partial \Delta$;
- \blacktriangleright fundamental equivalence: '**G** acts strongly transitively on Δ ' \iff '**G** acts strongly transitively on $\partial \Delta'$;
- \triangleright playing with two non- $\mathbf{G}_{\mathbf{x}_0}$ -conjugate strongly regular hyperbolic elements in **G** to prove: '**G** not strongly transitive on $\partial \Delta' \implies (\mathbf{G}, \mathbf{G}_{x_0})$ not a Gelfand pair'.

Strongly regular elements and their dynamics

- $a \in Aut(\Delta)$ is strongly regular hyperbolic element if it admits a unique translation apartment A_a in Δ and whose translation axes are not parallel with any of the walls of the apartment A_a ;
- ► for every $\xi \in \partial \Delta$ the limit $\lim_{n \to \infty} a^n(\xi)$ exists in ∂A_a (w.r.t. the cone topology) and the fixed-point-set of **a** in $\partial \Delta$ is ∂A_a .

 $a^{n+k}(\xi)$

► calculate

$$\begin{split} f*g(a^{m}b^{n}) &= \int_{G} f(a^{m}b^{n}h)g(h^{-1})d\mu(h) \\ &\geq \int_{b^{-n}G_{x_{0}}} f(a^{m}b^{n}h)g(h^{-1})d\mu(h) = \mu(\mathsf{K}) > 0; \\ \text{show that } g*f(a^{m}b^{n}) &= \int_{G} g(a^{m}b^{n}h)f(h^{-1})d\mu(h) = 0. \\ \text{Contradiction with } \mathsf{C}_{c}^{\mathsf{G}_{x_{0}}}(\mathsf{G}) \text{ is commutative.} \end{split}$$

Further applications: Flat closing conjecture on general buildings

Strongly regular hyperbolic elements acting on Euclidean buildings are used to give a positive answer to Gromov's flat closing conjecture on general buildings:

 \blacktriangleright Let Δ be a locally finite thick building of type (W, S), with S finite. Let $G \leq Aut(\Delta)$ a type-preserving subgroup with cocompact action. Does the existence of a **d**-flat $\mathbf{F} \subset \mathbf{\Delta}$ imply that **G** contains a copy of \mathbb{Z}^d ?

Conclusions

For totally disconnected locally compact groups the only known examples of

Figure 1: the green line (ξ_{-}, ξ_{+}) is a translation axis of the strongly regular element a; c_{-} is the chamber in ∂A_a containing ξ_{-} ; Q is a sector in A_a corresponding to c_- ; the red line between p and ξ is the geodesic ray $[p, \xi).$

Gelfand pairs are coming from groups acting by automorphisms on Euclidean buildings. More precisely in [Léc10] and [APVM11] they prove that for **G** a closed, strongly transitive and type-preserving subgroup of $Aut(\Delta)$, with Δ a locally finite thick building, there is no Gelfand pair if Δ non-Euclidean. If Δ is Euclidean there is a Gelfand pair (G, K), with K a parabolic subgroup, only in the well known case when $\mathbf{K} = \mathbf{G}_{\mathbf{x}}$, with \mathbf{x} a special vertex in Δ .

References

- [APVM11] P. Abramenko, J. Parkinson, and H. Van Maldeghem, A classification of commutative parabolic Hecke algebras, 2011. arXiv 1110.6214.
 - [CC] P-E. Caprace and C. Ciobotaru, Gefland pairs for locally compact groups acting on Euclidean buildings. preprint 2013 (to appear).
 - [Léc10] J. Lécureux, Hyperbolic configurations of roots and Hecke algebras, J. Algebra 323 (2010), 1454-1467.

http://www.uclouvain.be/corina.ciobotaru

corina.ciobotaru@uclouvain.be