## Constructing Non-Trivial Words

in Non-Periodic Branch Groups
This is an example of a branch group $G$ that has exponential growth but does not contain any non-abelian free subgroups. We demonstrate how to construct a non-trivial word $w_{a, b}(x, y)$ for any $a, b \in G$ such that $w_{a, b}(a, b)=1$. The group $G$ is not just infinite. We prove that every normal subgroup of $G$ is finitely generated as an abstract group and every proper quotient soluble. Further, $G$ has infinite virtual first Betti number but is not large

Elisabeth Fink, University of Oxford, fink@maths.ox.ac.uk

## Branch groups

Rooted Trees:

- sequence $\{l i\}$ of coprime in-
tegers
- vertices on level $n$ have
vertices below

Automorphisms
automorphism on $T$ : map that pre-
serves edge incidence and the root $r$.

Subgroups


Branch Groups

1. act transitively on each level of the tree
2. $r s t_{G}(n)$ has finite index
in $G$ for all $n \geq 0$

The Group And Subgroups
The Generators


The Structure

$$
\text { Define } b(i)=b^{a^{i-1}}
$$

- $G^{\prime}=\left\langle b(2)^{-1} b(1), b(3)^{-1} b(2), \ldots, b(1)^{-1} b\left(l_{0}\right)\right\rangle$.

Define $G_{n}=\left\langle a_{n}, b_{n}\right\rangle$
$-G_{n}^{\prime} \times \cdots \times G_{n}^{\prime}=G^{(n+1)} \leq G$
$-G^{(n+1)} \leq r s t_{G}(n)$

Finding Words
An Example
Let $g_{1}$ and $g_{2}$ be in $G$. We construct a word $w_{g_{1}, g_{2}}(x, y) \in F_{2}$ such that $w_{g_{1}, g_{2}}\left(g_{1}, g_{2}\right)=1$ in $G$.

$g_{1}=(a b)^{4} a^{-4}=\left(b_{1}, b_{1} a_{1}, b_{1} a_{1}, b_{1} a_{1}, a_{1}, 1, \ldots, 1\right)_{1} \quad$| We assume $l_{2}$ is big enough and move the spines away |
| :--- |
| from their original position: |


| $c_{1}^{g_{1}^{4}}=\left(1,\left(1,1,1, b_{2}, a_{2}, b_{2}^{-1}, a_{2}^{-1} b_{2}^{-1} a_{2}^{-1} b_{2} a_{2}, 1, \ldots, 1\right)\right.$, |
| :--- |
| $\left.\left(1,1,1,1, b_{2}^{-1}, a_{2}^{-1} b_{2}^{-1} a_{2}^{-1} b_{2}^{2} a_{2}, a_{2}^{-1} b_{2}^{-1} a_{2} b_{2} a_{2}, 1, \ldots, 1\right), 1, \ldots, 1\right)_{2}$ |


This tree and the tree for $c_{1}$ on the left only decorate distinct verlices. Hence
$c_{1}=\left(1,\left[b_{1} a_{1}, b_{1} a_{1}^{-1}\right],\left[b_{1} a_{1}, a_{1}\right], 1, \ldots, 1\right)_{1}=$
$\left(1,\left(a_{2}, b_{2}^{-1}, a_{2}^{-1}, 1, \ldots, b_{2}\right),\left(1, b_{2}^{-1}, a_{2}^{-1} b_{2}, a_{2}, 1, \ldots, 1\right), 1, \ldots, 1\right)$ This gives the word


We see that above every non-trivial entry on level 2 we have
the element $a_{1} b_{1}$ in $g_{1}$ which is of the form $a_{1}^{q} b$, with $q \neq 0$.

The Theorem
Let $g_{1}, g_{2} \in G$. Recursively define commutators

$$
c_{1}=\left[g_{1}, g_{2}\right] \quad \text { and } \quad c_{i}=\left[c_{i-1}, c_{i-1}^{c_{i-2}}\right] \text {, for } i \geq 2 \text { with } c_{0}=g_{1} \text {. }
$$

Lemma 1. If $g_{1}, g_{2} \in G$, then the number of spines $\xi\left(c_{i}\right)$ in the commutator $c_{i}$ defined as above is bounded by $\xi\left(c_{i}\right) \leq 5^{i}\left(\xi\left(g_{1}\right)+\xi\left(g_{2}\right)\right.$ ) for all $i \geq 0$.
The strategy is to observe that the number of spines of the commutators $c_{i}$ grows more slowly than the number of vertices on each level. We note the position of the spines of $c_{i}$ and aim to move them by conjugation such that none of the conjugated spines is at an old position. This new element will then commute with $c_{i}$.
Lemma 2. For every $i \geq 1$ we have $c_{i} \in r s t_{G}(i)$.
Commutators have a recursive form such that we can always find some power of $a$ 'above' every non-trivial entry.
Theorem. Assume that the defining sequence $\left\{l_{i}\right\}$ satisfies $l_{i} \geq\left(25 l_{i-1}\right)^{3} \prod_{j=0}^{i-1} l_{j}$. Then $G$ has no free subgroup of rank 2 .
The proof of Theorem at least allows slight improvements on the bound for $l_{l}$. However, it seems likely that the construction of a non-trivial word will require the sequence $l_{i}$ to grow at least as fast as $l_{i} \geq C \cdot l_{i-1}^{D \cdot m_{i}}$ where $C$ and $D$ are non-zero constants.

Private communication with Nekrashevych suggests that the result of his can be used to prove the absence of free subgroups for all defining sequences $\left\{l_{i}\right\}$.

