

This is an example of a branch group G that has exponential growth but does not contain any non-abelian free subgroups. We demonstrate how to construct a non-trivial word $w_{a,b}(x,y)$ for any $a, b \in G$ such that $w_{a,b}(a,b) = 1$. The group G is not just infinite. We prove that every normal subgroup of G is finitely generated as an abstract group and every proper quotient soluble. Further, G has infinite virtual first Betti number but is not large. Elisabeth Fink, University of Oxford, fink@maths.ox.ac.uk

Branch groups

Rooted Trees:

- sequence $\{l_i\}$ of coprime integers

- vertices on level n have l_n vertices below

Automorphisms automorphism on T: map that preserves edge incidence and the root r.

Subgroups

 $st_G(n)$ fixes all vertices on and above level n

 $rst_G(n)$ fixes all vertices outside the subtree with root v, a vertex on level n

The Group And Subgroups

The Generators

- a rooted automorphism *a*: permutes the l_0 vertices on level 1 cyclically

- a spinal automorphism b: acts on each level n + 1 as $b_n = (b_{n+1}, a_{n+1}, 1, \dots, 1)_{n+1}.$ where a_n is a cyclic permutation of l_n elements

Some Properties

- G is a branch group.
- every proper quotient of G is soluble.
- every normal subgroup of G is finitely generated
- G has infinite virtual first Betti number
- G is not just infinite
- G is not large

Constructing Non-Trivial Words in Non-Periodic Branch Groups

Finding Words

An Example

Let g_1 and g_2 be in G. We construct a word $w_{g_1,g_2}(x,y) \in F_2$ such that $w_{g_1,g_2}(g_1,g_2) = 1$ in G.

$$[b, b^{a}] = \left(b_{1}^{-1}, b_{1}a_{1}^{-1}, a_{1}, 1, \dots, 1\right)_{1}$$
$$b_{1}^{-1}b_{1}a_{1}^{-1}a_{$$

Step 1: $c_1 = [g_1, g_2]$

$$= \left(1, \left[b_{1}a_{1}, b_{1}a_{1}^{-1}\right], \left[b_{1}a_{1}, a_{1}\right], 1, \dots, 1\right)_{1} = \left(a_{2}, b_{2}^{-1}, a_{2}^{-1}, 1, \dots, b_{2}\right), \left(1, b_{2}^{-1}, a_{2}^{-1}b_{2}, a_{2}, 1, \dots, 1\right), 1, \dots, 1\right)$$

$$a_{2} \ b_{2}^{-1} \ a_{2}^{-1} \ 1 \qquad b_{2} \qquad 1 \ b_{2}^{-1} \ a_{2}^{-1} \ b_{2} \ a_{2} \qquad 1$$

We see that above every non-trivial entry on level 2 we have the element a_1b_1 in g_1 which is of the form $a_1^q b$, with $q \neq 0$.

The Theorem

Let $g_1, g_2 \in G$. Recursively define commutators

$$c_1 = [g_1, g_2]$$
 and $c_i = \left[c_{i-1}, c_{i-1}^{c_{i-2}}\right]$, for $i \ge 2$ with c_i

Lemma 1. If $g_1, g_2 \in G$, then the number of spines $\xi(c_i)$ in the commutator c_i defined as above is bounded by $\xi(c_i) \leq 5^i (\xi(g_1) + \xi(g_2))$ for all $i \geq 0$.

The strategy is to observe that the number of spines of the commutators c_i grows more slowly than the number of vertices on each level. We note the position of the spines of c_i and aim to move them by conjugation such that none of the conjugated spines is at an old position. This new element will then commute with c_i .

Lemma 2. For every $i \ge 1$ we have $c_i \in rst_G(i)$.

Commutators have a recursive form such that we can always find some power of a 'above' every non-trivial entry. **Theorem.** Assume that the defining sequence $\{l_i\}$ satisfies $l_i \ge (25l_{i-1})^{3\prod_{j=0}^{i-1}l_j}$. Then G has no free subgroup of rank 2.

The proof of Theorem at least allows slight improvements on the bound for l_i . However, it seems likely that the construction of a non-trivial word will require the sequence l_i to grow at least as fast as $l_i \ge C \cdot l_{i-1}^{D \cdot m_i}$ where C and D are non-zero constants.

Private communication with Nekrashevych suggests that the result of his can be used to prove the absence of free subgroups for all defining sequences $\{l_i\}$.

from their original position:

$$c_1^{g_1^4} = \left(1, \left(1, 1, 1, \frac{b_2}{2}, \frac{a_2^{-1}}{2}, \frac{b_2^{-1}}{2}, \frac{a_2^{-1}}{2}\right)$$

$$1 1 b_2 a_2 b_2^{-1} a_2^{-1} b_2^{-1} a_2^{-1}$$

This tree and the tree for c_1 on the left only decorate distinct vertices. Hence

This gives the word

We assume l_2 is big enough and move the spines away

 $(a_2, a_2, b_2^{-1}, a_2^{-1}b_2^{-1}a_2^{-1}b_2a_2, 1, \dots, 1)$ $b_2^{-1}a_2^{-1}b_2^2a_2, a_2^{-1}b_2^{-1}a_2b_2a_2, 1, \ldots, 1$, $1, \ldots, 1$.

1 1 1 $b_2^{-1} a_2^{-1} b_2^{-1} a_2^{-1} b_2^{2} a_2 a_2^{-1} b_2^{-1} a_2 b_2 a_2$ 1

 $\left[c_1, c_1^{g_1^4}\right] = 1.$

 $w_{g_1,g_2}(x,y) = \left[[x,y], [x,y]^{x^4} \right] =$ $y^{-1}x^{-1}yx^{-3}y^{-1}x^{-1}yx^{4}y^{-1}xyx^{-5}y^{-1}xyx^{4}$.

 $c_0 = g_1.$