

MOTIVATION

Groups acting on rooted trees are the subject of intense research. They provide answers to many hard problems in group theory: Burnside problem, Day problem (amenable but not elementary amenable groups), Milnor problem (groups of intermediate growth).

Some of the most well-known examples of these types of group are the Grigorchuk group and the Gupta–Sidki *p*-groups.

We study two aspects of their subgroup structure.

Commensurability Two groups are (abstractly) **commensurable** if they have isomorphic finite index subgroups.

Subgroup separability A group is **subgroup separable** if all its finitely generated subgroups are closed in its profinite topology. This has connections with the generalized word problem.

Generalized word problem: For a finitely generated group and any finitely generated subgroup H, 'is there an algorithm that decides whether a word in the generators represents an element in H? This is solvable for subgroup separable groups with solvable word problem. [Grigorchuk, 1984]: There is an algorithm for all groups of 'spinal type', in particular for Grigorchuk and Gupta–Sidki p-groups.

Theorem (Grigorchuk and Wilson, [4]). All infinite finitely generated subgroups of the Grigorchuk group are commensurable with it. The Grigorchuk group is subgroup separable.

REGULAR ROOTED TREES

 $T_d = d$ -regular rooted tree: a tree with root v_0 such that every vertex has d 'children'.

 \mathcal{L}_n = vertices at distance *n* from root.

 $T_v =$ subtree rooted at v.

Some subgroups and homomorphisms: For a group G acting on T_d (fixing v_0)

 $St_G(v) := \{g \in G : v^g = v\}$ is the stabilizer of v;

 $\operatorname{St}_G(n) := \bigcap_{v \in \mathcal{L}_n} \operatorname{St}_G(v)$ is the *n*th level stabilizer.

For any vertex v, for every $x \in \operatorname{St}_G(v)$ we can assign a unique $x_v \in \operatorname{Aut} T_v$ by restriction: $x_v := x|_{T_v}$.

If $v \in \mathcal{L}_n$, identify T_v and $T_{(n)}$ (tree rooted at level n). Then we have a homomorphism $\varphi_v : \operatorname{St}(v) \to \operatorname{Aut} T_{(n)}, x \mapsto x_v$.

 $G_v := \varphi_v(\operatorname{St}_G(v))$ is the **projection** of G at v.

SUBGROUP STRUCTURE OF THE GUPTA-SIDKI GROUP

ALEJANDRA GARRIDO

UNIVERSITY OF OXFORD garridoangul@maths.ox.ac.uk

GUPTA-SIDKI p-GROUPS:

They are residually finite, just infinite, fractal, branch, p-groups. See [1] for more.

MAIN RESULTS

Let G be the Gupta–Sidki 3-group.

- A All infinite finitely generated subgroups of G are commensurable with G or $G \times G$.
- **B** G is not commensurable with $G \times G$. This also holds for all Gupta–Sidki p-groups and many other branch groups (joint with J. S. Wilson, [3]).
- **C** G is subgroup separable, therefore the generalized word problem is solvable.

LENGTH REDUCTION

Since G is fractal, all projections of its elements are in G. This allows the use of **length reduction arguments**, reducing word length by projecting down levels of T.

Example: the element $x = a^2 b^3 a^4 b^2 a$ for p = 7 can be written as

$$x = a^{-5}b^3a^5a^{-1}b^2a = (b^2, a^2, a^{-2}, 1, b^3, a^3, a^{-3}) \in \operatorname{St}_G(1).$$

For each $v \in \mathcal{L}_1$, the vth coordinate of this vector is x_v . Note that each x_v is of shorter word length than x.

Length reduction is key in the proof of Theorems A and C.

PROOF IDEAS: KEY THEOREM

- **Theorem.** Let \mathcal{X} be a family of subgroups of G satisfying
 - 1. $1 \in \mathcal{X}, G \in \mathcal{X};$
 - 2. if $H \in \mathcal{X}$ and $H \leq_f L$ then $L \in \mathcal{X}$;
 - then $H \in \mathcal{X}$.
- All finitely generated subgroups of G are in \mathcal{X} .

Proof by contradiction, relies on length reduction and

Lemma. If H is a finitely generated subgroup with $H \not\leq \operatorname{St}_G(1)$ and $H_u \neq I$ G for all $u \in \mathcal{L}_1$, then $H_u \leq \operatorname{St}_G(1)$.

Find finitely generated $H \notin \mathcal{X}$ with shortest maximum length of generators. If $H \leq \operatorname{St}_G(1)$ then by 3, some projection is not in \mathcal{X} and is generated by elements of \approx half the length. If $H \not\leq \operatorname{St}_G(1)$, use Lemma and show all generators of H_u for $u \in \mathcal{L}_2$ are shorter.

Theorem (A). All subgroups of G which are commensurable with G or $G \times G$, or finite satisfy 1-3 as in the key theorem.

Showing 1 and 2 is easy, 3 is harder (use self-similarity and subgroup properties).

Theorem (C). All finitely generated subgroups of G all of whose finite index subgroups are closed in the profinite topology on G satisfy 1-3 as above. In particular, G is subgroup separable.

Again, 1 and 2 are easy. To show 3 use the previous theorem and a lemma: if a group is commensurable with G or $G \times G$ then all its quotients are residually finite.

- Transfer dissertation, University of Oxford (2012).
- groups. Pre-print arXiv:1301.6419
- (2003), 671-682.
- Math. Z. **182** (1983), 385–388.

3. if H is finitely generated, $H \in St(1)$ and $H_u \in \mathcal{X}$ for every $u \in \mathcal{L}_1$

PROOF IDEAS: THEOREMS A AND C

REFERENCES

[1] L. Bartholdi, R. I. Grigorchuk and Z. Sunik. Branch groups. In Handbook of Algebra, vol. 3 (North-Holland, Amsterdam, 2003) pp. 989

[2] A. Garrido. Abstract commensurability and the Gupta-Sidki group.

[3] A. Garrido and J. S. Wilson. On subgroups of finite index in branch

R. I. Grigorchuk and J. S. Wilson. A structural property concerning abstract commensurability of subgroups, J. London Math. Soc. (2) 68

N.D. Gupta and S. Sidki. On the Burnside problem for periodic groups,