

Discontinuous actions of unit groups of orders in rational group rings QGAnn Kiefer — Vrije Universiteit Brussel — Aspirant FWO Spa, Belgium, April 1 2013

Units in an order of $\mathbb{Q}G$

Motivation

Definition 1. Let G be a group and R a ring. The **group** ring RG is defined as the set of all linear combinations of the form $\sum_{g \in G} a_g g$ with $a_g \in R$ and only a finite number of a_q are non zero. The sum of two elements is defined componentwise:

We call the group algebra $\mathbb{Q}G$ of **exceptional type** if it has a simple component which is equal to

• a non-commutative division ring different from a totally definite quaternion algebra,

- $M_2(D)$ with D equal to \mathbb{Q} or $\mathbb{Q}(\sqrt{-d})$ with d > 0,
- a 2 by 2 matrix ring over a totally definite rational quaternion algebra $\mathcal{H}(a, b, \mathbb{Q})$.

 \rightarrow Idea for these cases: **hyperbolic geometry**

Example 10. Background: $SL_1(\mathcal{H}(2,5,\mathbb{Z}[i]))$

Summary:

• Problem of purely algebraic nature: group of units in an order in a rational group ring,

- Translate problem to hyperbolic geometry: embed group in $SL_2(\mathbb{C})$ and let it act on hyperbolic space,
- Apply the Poincaré Theorem to get a presentation of the group,

 $\left(\sum_{g\in G} a_g g\right) + \left(\sum_{g\in G} b_g g\right) = \sum_{g\in G} (a_g + b_g)g$

and the product is given by

 $(\sum_{g \in G} a_g g)(\sum_{g \in G} b_g g) = \sum_{g,h \in G} a_g b_h gh.$

Definition 2. Let A be a \mathbb{Q} -algebra. A subring R of A containing its unity is called an **order** in A if R is finitely generated as a \mathbb{Z} -module and $\mathbb{Q}R = A$.

Example 3. \mathbb{Z} is an order in \mathbb{Q} and $\mathbb{Z}G$ is an order in $\mathbb{Q}G$.

Open problem: Finding a presentation of $\mathcal{U}(\Gamma)$, where Γ is an order in $\mathbb{Q}G$, for G a finite group, in particular describing $\mathcal{U}(\mathbb{Z}G).$

General Approach By the Wedderburn-Artin Theorem,

 $\mathbb{Q}G = \prod M_{n_i}(D_i).$

▶ let \mathcal{O}_i be an order in D_i , ► set $\mathcal{O} = \prod_{i=1}^{n} M_{n_i}(\mathcal{O}_i),$ $\blacktriangleright \mathcal{U}(\mathcal{O})$ and $\mathcal{U}(\mathbb{Z}G)$ (resp. $\mathcal{U}(\mathcal{O}')$ for \mathcal{O}' an order in $\mathbb{Q}G$). are commensurable, **Theorem 4** (Commensurability of two orders in a Q-algebra). Let \mathcal{O}_1 and \mathcal{O}_2 be two orders in a Q-algebra. Then there exists an order \mathcal{O} such that $[\mathcal{O}_i : \mathcal{O}] < \mathcal{O}_i$ ∞ for i = 1, 2. \mathcal{O}_1 and \mathcal{O}_2 are said to be commensurable.

The Poincaré Theorem

Definition 6. A closed subset $\mathcal{F} \subseteq X$, with X a metric space, is called a **fundamental domain** of the discontinuous group $\Gamma < \text{Iso}(X)$ if the following conditions are satisfied: • the set \mathcal{F} is closed and connected in X,

• the members of $\{g(\mathcal{F}^{\circ}) \mid g \in \Gamma\}$ are mutually disjoint, and

• $X = \bigcup_{g \in \Gamma} g$	$g(\mathcal{F}).$	
Example 7.		
	2 1.75 1.5	
	Fundamental domain of $SL_2(\mathbb{Z})$	
Theorem 8	(Poincaré). Let \mathcal{F} be a convex	fundamenta

• Re-translate back to groups rings.

Done in [4].

Product of Hyperbolic Spaces

More difficult context: D a classical quaternion algebra over $\mathbb{Z}[\xi_n]$ where ξ_n is a *n*-th primitve root of unity. **Example 11.** The easiest case: $\mathbb{Q}(Q_8 \times C_7)$.

 $\mathcal{U}(\mathbb{Z}(Q_8 \times C_7)) \rightsquigarrow \mathcal{U}(\mathcal{H}(-1, -1, \mathbb{Z}[\xi_7])) \hookrightarrow \mathrm{SL}_2(\mathbb{Z}[\xi_7]).$

► $SL_2(\mathbb{Z}[\xi_7])$ not discrete in $SL_2(\mathbb{C})$, ► discreteness in $SL_2(\mathbb{C}) \times SL_2(\mathbb{C}) \times SL_2(\mathbb{C})$, \rightarrow hence discontinuous action on $\mathbb{H}^3 \times \mathbb{H}^3 \times \mathbb{H}^3$. Question: Does the Poincaré Theorem still work in this case? **Definition 12.** Let $K = \mathbb{Q}(\sqrt{d})$ with d a square-free positive integer and let

 $\blacktriangleright \mathcal{U}(\mathcal{O}) = \prod_{i=1}^{n} \operatorname{GL}_{n_i}(\mathcal{O}_i),$ ▶ for every $1 \leq i \leq n$, $\operatorname{GL}_{n_i}(\mathcal{O}_i)$ is commensurable with $\mathcal{U}\left(\mathcal{Z}\left(\mathcal{O}_{i}\right)\right) \times \mathrm{SL}_{n_{i}}\left(\mathcal{O}_{i}\right).$

Hence the original problem is reduced to the one of finding a presentation of $\mathrm{SL}_{n_i}(\mathcal{O}_i)$.

For many finite groups G:

 \triangleright specific finite set B of generators of a subgroup of finite index in $\mathcal{U}(\mathbb{Z}G)$ given in a purely algebraic way.

Theorem 5 (Bass, Vaseršteĭn and Venkataramana and Kleinert). Let \mathcal{O} be a maximal order in a finite dimensional rational division algebra D with center K (a number field). If

• $n \geq 3$ or

• n = 2 and D is different from \mathbb{Q} , a quadratic imaginary extension of \mathbb{Q} and a totally definite quaternion algebra with center \mathbb{Q} ,

domain, which is a polyhedron, for a discrete group Γ of \mathbb{H}^n . Then Γ is generated by

 $\Phi = \{ g \in \Gamma \mid \mathcal{F} \cap g(\mathcal{F}) \text{ is a side of } \mathcal{F} \}.$

The Poincaré method gives also a method for finding relations in the presentation of the group, based on the sides and the edges of the fundamental polyhedron.

Link to $\mathcal{U}(\mathbb{Z}G)$

Components of the algebra $\mathbb{Q}G$ of exceptional type: • $\mathcal{H}(a, b, \mathbb{Q}(\sqrt{-d}))$ for d a square-free positive integer, • $M_2\left(\mathbb{Q}\left(\sqrt{-d}\right)\right)$ for d a square-free positive integer. Unit groups of orders in these algebras:

▶ act as isometries via Möbius action on \mathbb{H}^3 ,

▶ discrete in $SL_2(\mathbb{C})$ and hence discontinuous action on \mathbb{H}^3 .

 \rightarrow generators via the Poincaré Theorem

Example 9.

 $\mathcal{O} = \mathbb{Z} \left[\frac{1 + \sqrt{d}}{d_0} \right], \text{ with } d_0 = \begin{cases} 1, \text{ if } d \not\equiv 1 \mod 4; \\ 2, \text{ if } d \equiv 1 \mod 4. \end{cases}$

The Hilbert Modular Group \mathcal{H} is the subgroup of $\mathrm{GL}_2(\mathcal{O})$ consisting of matrices P with $det(P) \gg 0$.

Test case: Hilbert Modular Group \mathcal{H} , with K such that \mathcal{O} PID.

Lemma 13. An embedding of the group \mathcal{H} is discrete in $SL_2(\mathbb{R}) \times SL_2(\mathbb{R})$ and has thus a discontinuous action on $\mathbb{H}^2 \times \mathbb{H}^2$.

* Is it possible to find a fundamental domain?

▶ Yes, but no longer a polyhedra.

* Concerning generators: what is a side of the fundamental domain?

▶ Find an adequate definition of a side. * Concerning relations: what is an edge of the fundamental domain?

▶ Find an adequate definition of an edge.

Done in [5].

Further Work

▶ generalize the theory to $K = \mathbb{Q}(\sqrt{d})$ with \mathcal{O} not PID,

then a finite group B of generators may be given for $\mathrm{SL}_{n_i}(\mathcal{O})$. If

• n = 1 and D is either commutative or a totally definite quaternion algebra over \mathbb{Q} , then $\mathcal{U}(\mathcal{O})$ is finite.

 $\operatorname{SL}_1\left(\mathcal{H}\left(-1,-1,\mathbb{Z}\left[\frac{1+\sqrt{-23}}{2}\right]\right)\right)$

▶ generalize the theory to more copies of hyperbolic (3-)space,

 \triangleright attack the concrete problem of $\mathcal{U}(\mathbb{Z}(Q_8 \times C_7))$.

References

- [1] H. Cohn, On the shape of the fundamental domain of the Hilbert modular group, Proc. Sympos. Pure Math., Vol. VIII, 1965.
- [2] C. Corrales, E. Jespers, G. Leal, Á. del Río, Presentations of the Unit Group of an Order in a Non-Split Quaternion Algebra, Advances in Mathematics 186(2004), 498-524.
- [3] J. Elstrodt, F. Grunewald, J. Mennicke, Groups Acting on Hyperbolic Space, Springer Verlag, Berlin Heidelberg, 1998.
- [4] E. Jespers, S. O. Juriaans, A. Kiefer, A. de A. e Silva, and A. C. Souza Filho, From the Poincaré Theorem to generators of the unit group of integral group rings of finite groups, submitted. [5] E. Jespers, A. Kiefer, Á. del Río, Discontinuous action of a discrete subgroup of $SL_2(\mathbb{C}) \times SL_2(\mathbb{C})$ on $\mathbb{H}^2 \times \mathbb{H}^2$, in preparation.
- [6] J.G., Ratcliffe, Foundations of Hyperbolic Manifolds, Springer Verlag, New York, 1994.