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Definitions and examples

• A topological group is locally compact, totally disconnected, and second
countable if the underlying topological space has these properties.
• Examples
• Countably based profinite groups: e.g. ZN

3 with the product topology
• Isom(Γ) with the topology of pointwise convergence for Γ a countably infinite,

connected, and locally finite graph

• A set is comeagre in a space if it has a subset which is a dense Gδ in the
space.

Facts

(i) There are many non-trivial, non-locally compact, totally disconnected,
and second countable groups with a comeagre conjugacy class. E.g.
Sym(N), Aut(Q, <) (folklore, Truss)

(ii) A non-trivial compact group G cannot have a dense conjugacy class.

(iii) There is an infinite, profinite, and second countable group with a
non-meagre conjugacy class. (Rosendal)

(iv) There is a non-trivial, locally compact, totally disconnected, and
second countable group with a dense conjugacy class. (Akin, Glasner,
Weiss [1])

Motivation

The above facts show that compact groups are “too small” for even a
dense conjugacy class. While, non-locally compact groups are “large
enough” to admit a comeagre conjugacy class. Naturally, one asks where
locally compact groups fall. I.e. are they still “too small” for a comeagre
conjugacy class or are they “large enough” to admit a comeagre conjugacy
class? A priori, one may guess that locally compact groups are “too
small”. However, items (iii) and (iv) indicate the opposite.

Question (Kechris, Rosendal [2])

Can a non-trivial, locally compact, totally disconnected, and
second countable group have a comeagre conjugacy class?

Background on Profinite groups

Let U be a profinite group.

• The Frattini subgroup of U , Φ(U), is the intersection of all maximal,
proper open subgroups.

• Φ(U) is the collection of non-generators of U . In particular, if
U = HΦ(U) for H ≤c U , then U = H .

• If U is pro-p, then Φ(U) = Up[U ,U ] where [U ,U ] is the closure of the
commutator subgroup.

Proofs of these and a nice introduction to profinite group theory may be
found in [4].

Profinite Structure Theorems

• (Zel’manov [6]) Every torsion pro-p group is locally finite.

• (Wilson, [5]) Let U be a compact Hausdorff torsion group. Then U has a
finite series

{1} = U0 ≤ U1 ≤ ... ≤ Un = U

of closed characteristic subgroups in which each factor Ui/Ui−1 is either
(1) pro-p for some prime p or (2) isomorphic to a Cartesian product of
isomorphic finite simple groups.

Key Lemma

Let U be a profinite group with normalized Haar measure µ and hU denote
the conjugacy class of h in U . If h ∈ U is such that µ(hU) > 0, then
|CU(h)| <∞.

Proof.

Take N E U an open normal subgroup.

• Take a transversal h, k1hk−1
1 , .., knhk−1

n for (hN)U/N in U/N . Then
hU ⊆ hN ∪ ... ∪ knhk−1

n N .

• So, µ(hU) ≤ |(hN)U/N|µ(N). And,

µ(N)|U/N : CU/N(hN)| =
µ(N)|U/N |
|CU/N(hN)|

=
1

|CU/N(hN)|
• Whence, |CU/N(hN)| ≤ 1

µ(hU)
, and it follows |CU(h)| ≤ 1

µ(hU)
.

Lemmas

1. Let G be totally disconnected, locally compact, and second countable.
If g G is non Haar null, then g U is non Haar null for all compact, open
subgroups U of G .

2. Let G be as above. If g ∈ P1(G ) := {g ∈ G : cl(〈g〉) is compact} and
µ(g G ) > 0, then g is a torsion element. proof:
• Find W compact, open, and containing g .
• gW is non Haar null by lemma (1).
• By the key lemma, g is torsion. �

3. A torsion pro-p group with a non Haar null conjugacy class is finite.
proof:
• Suppose U is a torsion, pro-p group with a non-null conjugacy class hU .
• h−1hU ⊆ [U ,U ] is non-null where [U ,U ] is the closure of the commutator

subgroup.
• [U ,U ] is open by the Steinhaus-Weil theorem. For a nice proof see [3].
• Since U is pro-p, [U ,U ] ⊆ Φ(U) with Φ(U) the Frattini subgroup of U .
• Letting k1, .., kn be coset representatives for Φ(U) in U , U = cl(〈k1, .., kn〉)Φ(U).

So U is finitely generated and, therefore, finite by Zel’manov’s theorem. �

Theorem [W.]

If G is a non-trivial, locally compact, totally disconnected, and second
countable group and g G is a dense conjugacy class, then g G is Haar null.

Proof.

• Suppose g ∈ G is such that g G is dense and non-null for contradiction.

• Wlog g ∈ P1(G ) and is thus torsion by lemma (2). It follows G has
exponent |g |.
• Take U a compact open subgroup. By Wilson’s theorem, we have

{1} = U0 ≤ U1 ≤ ... ≤ Un = U

• Let k < n be greatest such that Uk is not open in U .

• Uk+1/Uk then has a non-null conjugacy class. Uk+1/Uk cannot be pro-p
by lemma (3). If a product, the product must be finite since there is an
element with finite centralizer.

• This contradicts the choice of k .

Corollary

A non-trivial, locally compact, totally disconnected, and second countable
group cannot have a comeagre conjugacy class.

Proof.

• Suppose g G is comeagre for contradiction.

• Since G is Kσ, we may take G =
⋃

i∈ω Ki with Ki compact.

• g G =
⋃

i∈ω g Ki ; so, some g Ki is non meagre by the Baire category
theorem.

• g Ki is closed and so contains an open set O.

• Thus g G = OG is open and µ(g G ) > 0.

• This contradicts the theorem.

Remarks

• The corollary answers Kechris and Rosendal’s question for all locally
compact, second countable groups by an unpublished result of Professor
K.H. Hofmann.

• A pre-print of the result above along with Hofmann’s result will be posted
to the arXiv in the near future. If you would like a copy, feel free to email
me: pwesol3@uic.edu
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