
Some algebraic properties of

compact topological groups
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Compact topological groups: examples

connected :

• S1, circle group.

• SO(3,R), rotation group

not connected:

• Every finite group, with the discrete topology.

• Gal(Q/Q) : inverse limit of finite Galois groups,

• Zp : inverse limit of finite cyclic groups

Such inverse limits inherit a topology from the

discrete finite groups. It is

• compact (Tychonoff’s Theorem) and

• totally disconnected.

Compact and tot. disconn. topological group =

profinite group = inverse limit of finite groups

Familiar examples:

• infinite Galois groups

• matrix groups such as GLn(Zp)

• free profinite groups
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Theorem 1 Let G be a compact group with iden-
tity component G0.

(i) G/G0 is a profinite group

(ii) G0 = Z · P where Z is the centre of G0

and

P ∼=
∏

Si

D
is a Cartesian product of compact connected
simple Lie groups Si modulo a central subgroup
D.

Part (ii) : Hilbert’s 5th problem in compact case

Z is essentially a product of copies of S1 : a

‘protorus’

The compact connected simple Lie groups are

well known – SO(n), SU(n) etc.
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All results are joint work with Nikolay Nikolov.

G will denote a compact group

N is a normal subgroup of (the underlying ab-
stract group) G.

Definition G is of f.g. type if the maximal
profinite quotient G/G0 is topologically finitely
generated ;

[equivalently: G/G0 is an inverse limit of finite

d-generator groups for some fixed number d.]

Theorem 2 (‘Serre’s question’) If G is of f.g.
type and G/N is finite then N is open in G.
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Since the topology on a profinite group is de-

fined by the family of all open subgroups (not true

for connected groups!), an immediate consequence

is

Corollary 1 (‘rigidity’) If G is a finitely gen-
erated profinite group then every group homo-
morphism from G to any profinite group is con-
tinuous.

In particular this shows that the topology on

such a profinite group is uniquely determined by

the group-theoretic structure. In fact it’s de-
finable: in contrast to abstract groups, a f. g.

profinite group is determined up to isomorphism

by its first-order theory (Lubotzky / Jarden).
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Remarks. (i) In any compact group, open sub-

groups all have finite index (immediate from the

definition).

(ii) A compact connected group has no proper

subgroups of finite index: not obvious from the

definition but follows from the structure theory,

which implies that such a group is divisible, i.e.

all elements have nth roots for all n. So the meat

of Theorem 2 is in the profinite case.

(iii) The restriction to f.g. type is absolutely

necessary: in infinitely generated profinite groups

the topology is only loosely connected to the ab-

stract group structure.
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Examples: here Cq is a cyclic group of order

q, and p is a prime.

• The profinite group CZ
p has 22

ℵ0 subgroups of

index p, but only countably many open sub-

groups.

This group therefore has many distinct topologies,

but the resulting topological groups are all isomorphic.

• The profinite groups A =
∏

n∈NCpn and A ×
Zp are isomorphic as abstract groups, but not

as topological groups.

However, every finite (abstract) image of A occurs

also as a continuous image.

• There is a profinite group having no abelian

continuous image, but having C2 as an abstract

image.
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What about countable images?

A compact group can’t be countably infinite.

Could there be a countably infinite abstract im-

age? YES!

Let A be an infinite f.g. abelian profinite group.

Then either A maps onto Zp or A maps onto

B =
∏

p∈P Cp, P an infinite set of primes.

We have additive group homomorphisms

Zp ↪→ Qp → Q,

B ∼=
∏
p∈P

Fp�
∏
p∈P

Fp/˜ = F � Q,

where F is a non-principal ultraproduct, hence a

field of characteristic 0.

In both cases these compose to give a group epi-

morphism from A onto Q.
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Main result:

Theorem 3 If G is of f.g. type and G/N is
countably infinite then G/N has an infinite virtually-
abelian quotient.

This implies for example that G cannot map

onto a countably infinite simple group.

Corollary 2 Suppose G is of f.g. type. Then
G has a countably infinite abstract image if and
only if G has an infinite virtually-abelian con-
tinuous quotient.

By Theorem 2, if G/N is residually finite then N

is closed. As every finitely generated abelian group

is residually finite, we get

Corollary 3 If G/N is finitely generated (as
abstract group) then G/N is finite (and so N

is open in G).
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A generalisation

Let N denote the closure of N in G.

G/N countable =⇒ G/N a countable compact group

=⇒ G/N finite =⇒ N open.

Definition
N is virtually dense in G if N is open in G.

N can have infinite index – i.e. N < N – if G

is abelian.

Another example: I an infinite index set,

G =
∏
i∈I

Hi

a product of non-trivial compact groups. Then the

restricted direct product

N =
⊕
i∈I

Hi

is dense in G, and has infinite index.

Definition
G as above is strictly infinite semisimple if I is

infinite and each of the Hi is either a finite simple
group or a connected simple Lie group.
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Theorem 4 Let G be a compact group of f.g.
type. Then G has a virtually-dense normal sub-
group of infinite index if and only if G has a
(continuous) quotient that is either

• infinite and virtually abelian or

• virtually (strictly infinite semisimple).

We can also characterize precisely those G that

have a proper dense normal subgroup: the answer

involves certain restrictions on the simple factors

occurring in the strictly infinite semisimple quo-

tient.

Exercise. Deduce: if G is just-infinite and not

virtually abelian then every normal subgroup of
G is closed (and so G is just-infinite as abstract

group).

11



Key question: how to get topological informa-

tion from algebraic input?

Given: (i) definition of topological group:

group multiplication is continuous,

(ii) the definition of compact, which implies

that a continuous image of a compact set is
compact, hence closed.
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Lemma 1 Let X be a closed subset of a com-
pact group G, with 1 ∈ X = X−1. Then the
subgroup 〈X〉 generated (algebraically) by X is
closed in G if and only if there exists n such
that

〈X〉 = X∗n

= {x1 . . . xn | xi ∈ X} .

In this case, we say that X has width (at most)

n in G, and write

mX(G) ≤ n.

If G is profinite,

mX(G) = sup
{
mXK/K(G/K) | K Co G

}
.

– Reduces the study of mX(G) to the case where

G is finite.
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Results on finite groups

A finite group Q is almost-simple if

S ≤ Q ≤ Aut(S)

for some simple (non-abelian) group S

Definition. For a finite or profinite group G,

G0 =
⋂
{K Co G | G/K is almost-simple} .

Theorem 5 H C G, a finite group.
Y a symmetric subset of G such that

H 〈Y 〉 = G′ 〈Y 〉 = G.

If H ≤ G0 or 〈Y 〉 = G then

[H,G] =

∏
y∈Y

[H, y]

∗f

where f = f (d, r) = O(r6d6), d = d(G),.

Here [H,G] = 〈[h, g] | h ∈ H, g ∈ G〉,
G′ = [G,G], derived group of G ).
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Routine compactness arguments turn Theorem

5 into

Theorem 6 G f. g. profinite, H C G closed.
Y a finite symmetric subset of G such that

H 〈Y 〉 = G′ 〈Y 〉 = G.

If H ≤ G0 or 〈Y 〉 = G then

[H,G] =

∏
y∈Y

[H, y]

∗f
for some finite f .

Corollary 4 G f. g. profinite, H C G closed.
Then [H,G] is closed.

Also true (but harder) when G is compact of f.g.

type.

Suppose that Y ⊆ N C G. Then [H,G] ≤
N . It is now easy to deduce the key ‘reduction
theorem’:
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Corollary 5 Let G be a finitely generated profi-
nite group with a normal subgroup N . If

NG′ = NG0 = G

then N = G.

Reduces problems about G to problems about

• G/G′ : an abelian group,

• G/G0 : an extension of a semisimple group

by a soluble group. In fact there are closed

normal subgroups

A0 C A1 C A2 C A3 = G/G0

with A0 semisimple, Ai/Ai−1 abelian (i = 1, 2, 3)
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Typical applications:

(1) Quick proof of Theorem 2 (‘Serre’s question’).

The abelian case is easy, and the semisimple case

follows from

Theorem (Martinez/Zelmanov, Saxl/Wilson, 1996-

97) Let q ∈ N. In any finite simple group S,
the set {xq | x ∈ S} has width at most f (q), a
finite number depending only on q.

(2):

Theorem G f.g. profinite, q ∈ N. Then Gq

is open in G.

(3): Proofs of Theorems 3 and 4: reduction to

problems about semisimple groups.
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Normal subgroups in semisimple groups.

This depends on some different ideas. Suppose

G =
∏
i∈I

Si

where I is an infinite index set and each Si is a

finite simple group, appearing with finite multi-

plicity. To each non-principal ultrafilter U on I we

associate a certain normal subgroup KU of G, and

prove:

|G/KU | ≥ 2ℵ0.

( G/KU is what is known as a ‘metric ultraprod-

uct’; it is a simple group. )

Proposition 1 Let N be a proper normal sub-
group of G. If N is dense in G then N ≤ KU
for some non-principal ultrafilter U .

Together with a similar construction in the case

where the Si are simple compact Lie groups, it

gives

Theorem 7 Let G be a semisimple compact group
of f.g. type and N a normal subgroup of G. If
|G/N | is infinite then |G/N | ≥ 2ℵ0.
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