Quasi-Clifford Algebras, their Lie and Jordan Algebras, and Quadratic Forms over \mathbb{F}_2

Hans Cuypers

TU/E- DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Abstract

Let R be a commutative and associative ring containing distinct elements 1 and -1. Let $\Gamma = (\mathcal{V}, \mathcal{E}, \lambda)$ be a labeled graph, with vertex set \mathcal{V} , edge set \mathcal{E} and labeling of the vertices $\lambda : \mathcal{V} \to R^*$ which maps $v \in \mathcal{V}$ to invertible elements $\lambda(v) \in R^*$. Then we consider the associative algebra $\mathfrak{C}(\Gamma)$ with identity element 1 generated by the elements of \mathcal{V} such that for all $v, w \in \mathcal{V}$ we have

$$\begin{array}{ll} v^2 & = \lambda(v) \mathbf{1}, \\ vw + wv & = 0 & \text{if } \{v, w\} \in \mathcal{E}, \\ vw - wv & = 0 & \text{if } \{v, w\} \notin \mathcal{E}. \end{array}$$

If Γ is the complete graph, $\mathfrak{C}(\Gamma)$ is a Clifford algebra, otherwise it is a so-called quasi-Clifford algebra, as in [2].

We describe this algebra as a twisted group algebra with the help of a vector space V over the field \mathbb{F}_2 equipped with a bilinear form g. See also [1]. Using this description, we determine the isomorphism type of $\mathfrak{C}(\Gamma)$ for several interesting graphs Γ .

As the algebra $\mathfrak{C}(\Gamma)$ is associative, we can also consider the corresponding Lie algebra with Lie bracket $[\cdot, \cdot]$ and Jordan algebra with multiplication \circ , as well as some of their subalgebras. We find that the elements $v, w \in \mathcal{V}$ satisfy the following relations

$$\begin{array}{ll} [v,w] &= 0 & \text{if } \{v,w\} \not\in \mathcal{E}, \\ [v,[v,w]] &= \lambda(v)w & \text{if } \{v,w\} \in \mathcal{E}. \end{array}$$

and

$$\begin{array}{ll} v \circ v &= \lambda(v) \mathbf{1} \\ v \circ w &= 0 & \text{if } \{v, w\} \in \mathcal{E} \\ v \circ (v \circ w) &= \lambda(v) w & \text{if } \{v, w\} \notin \mathcal{E} . \end{array}$$

We provide characterizations of both the Lie and Jordan algebras generated by the elements in \mathcal{V} , as algebras defined by these relations.

In case R is a field of characteristic 0, we can identify these Lie algebras with quotients of the compact subalgebras of Kac-Moody Lie algebras and prove that

they admit a so-called generalized spin representation, generalizing the work of Hainke, Köhl and Levy [3].

Keywords: Clifford algebra, Lie algebra, Jordan algebra, quadratic forms **MSC**: 15A, 16W, 17B, 17C

References

- Alberto Elduque and Adrián Rodrigo-Escudero. Clifford algebras as twisted group algebras and the Arf invariant. Adv. Appl. Clifford Algebras, 28(2):Art. 41, 15, 2018.
- H. M. Gastineau-Hills. Quasi-Clifford algebras and systems of orthogonal designs. J. Austral. Math. Soc. Ser. A, 32(1):1–23, 1982.
- [3] Guntram Hainke, Ralf Köhl, and Paul Levy. Generalized spin representations. Münster J. Math., 8(1):181–210, 2015. With an appendix by Max Horn and Ralf Köhl.