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Abstract

Let R be a commutative and associative ring containing distinct elements 1
and −1. Let Γ = (V, E , λ) be a labeled graph, with vertex set V, edge set E and
labeling of the vertices λ : V → R∗ which maps v ∈ V to invertible elements
λ(v) ∈ R∗. Then we consider the associative algebra C(Γ) with identity element
1 generated by the elements of V such that for all v, w ∈ V we have

v2 = λ(v)1,
vw + wv = 0 if {v, w} ∈ E ,
vw − wv = 0 if {v, w} 6∈ E .

If Γ is the complete graph, C(Γ) is a Clifford algebra, otherwise it is a so-called
quasi-Clifford algebra, as in [2].

We describe this algebra as a twisted group algebra with the help of a vector
space V over the field F2 equipped with a bilinear form g. See also [1]. Using this
description, we determine the isomorphism type of C(Γ) for several interesting
graphs Γ.

As the algebra C(Γ) is associative, we can also consider the corresponding Lie
algebra with Lie bracket [·, ·] and Jordan algebra with multiplication ◦, as well
as some of their subalgebras. We find that the elements v, w ∈ V satisfy the
following relations

[v, w] = 0 if {v, w} 6∈ E ,
[v, [v, w]] = λ(v)w if {v, w} ∈ E .

and
v ◦ v = λ(v)1
v ◦ w = 0 if {v, w} ∈ E ,
v ◦ (v ◦ w) = λ(v)w if {v, w} 6∈ E .

We provide characterizations of both the Lie and Jordan algebras generated
by the elements in V, as algebras defined by these relations.

In case R is a field of characteristic 0, we can identify these Lie algebras with
quotients of the compact subalgebras of Kac-Moody Lie algebras and prove that



they admit a so-called generalized spin representation, generalizing the work of
Hainke, Köhl and Levy [3].
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