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Preface
The leading pioneer in the development of the theory of algebraic
groups was C. Chevalley. Chevalley’s principal reason for interest in
algebraic groups was that they establish a synthesis between the two
main parts of group theory — the theory of Lie groups and the theory of
finite groups. Chevalley classified the simple algebraic groups over an
algebraically closed field and proved the existence of analogous groups
over any field, in particular the finite Chevalley groups.

—R.W. Carter

Linear algebraic groups are matrix groups defined by polynomials; a typi-
cal example is the group SLn of matrices of determinant one. The theory
of algebraic groups was inspired by the earlier theory of Lie groups, and the
classification of algebraic groups and the deeper understanding of their struc-
ture was one of the important achievements of last century, mainly led by
A. Borel, C. Chevalley and J. Tits.

For a long time, the three main standard references on the topic were the
books by Borel [Bor91], Humphreys [Hum75] and Springer [Spr09]. However,
they all three have the disadvantage of taking the “classical” approach to
algebraic groups, or more generally to algebraic geometry. Also the recent
book by Malle and Testerman [MT11] follows this approach.

We have opted to follow the more “modern” approach, which describes
algebraic groups as functors, and describes their coordinate algebra as Hopf
algebras (which are not necessarily reduced, in constrast to the classical ap-
proach). This essentially means that we take the scheme-theoretical point of
view on algebraic geometry. This might sound overwhelming and needlessly
complicated, but it is not, and in fact, we will only need the basics in order
to develop a deep understanding of linear algebraic groups. It will quickly
become apparent that this functorial approach is very convenient.

Of course, this approach is not new, and the first reference (which is still
an excellent introduction to the subject) is the book by Waterhouse [Wat79].
The most recent book covering the theory in great depth is the excellent
monograph by Milne [Mil17] that I can highly recommend for further reading.

The current lecture notes are based mainly on online course notes by
Milne that predated this book [Mil12a, Mil12b, Mil12c], in addition to on-
line lecture notes by McGerty [McG10] and Szamuely [Sza12]. In fact, some
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paragraphs have been copied almost ad verbatim, and I should perhaps apol-
ogize for not mentioning these occurrences throughout the text.

The interested reader who wants to understand the theory over arbi-
trary fields should have a look at Chapter VI of the Book of Involutions
[KMRT98], which is rather condensely written, but in the very same spirit
as the approach that we are taking in these course notes.

So why another version? For several reasons: I found the course notes of
Milne and his more recent book, although extremely detailed and complete,
in fact too detailed, and very hard to use in a practical course with limited
time. In contrast, McGerty’s notes —which unfortunately seem to have
disappeared from the web— are too condensed for a reader not familiar with
the topic. Szamuely’s notes are very much to the point, but they don’t go
deep enough into the theory at various places. Finally, these course notes
were written to be used in a Master course in Ghent University, and they
are especially adapted to the background knowledge and experience of the
students following this course.

This is why these course notes take off with a fairly long preliminary part:
after an introductory chapter, there are three chapters on algebras, category
theory and algebraic geometry. Linear algebraic groups —the main objects
of study in this course— will be introduced only in Chapter 5.

I have chosen the classification of reductive linear algebraic groups over
algebraically closed fields as the ultimate goal in this course. Of course,
there is much to do beyond this —in some sense, the interesting things only
start happening when we leave the world of algebraically closed fields— but
already reaching this point is quite challenging. In particular, and mainly in
the later chapters, some of the proofs have been omitted. I have nevertheless
tried to indicate the lines of thought behind the structure theory, and my
hope is that a reader who has reached the end of these course notes will have
acquired some feeling for the theory of algebraic groups.

One of the main shortcomings in these course notes is the lack of (more)
examples. However, the idea is that these course notes are accompanied by
exercise classes, and this is where the examples should play a prominent role.

It has been exactly 10 years now since I wrote the first version of these
course notes. Year after year, I have been making changes, sometimes minor,
sometimes much more substantial. In many cases, these changes were based
on excellent feedback that I received from students that took this course. I
am always open for further comments and suggestions for improvement.

Tom De Medts (Ghent, January 2023) — Tom.DeMedts@UGent.be
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Ch
ap

te
r 1 Introduction

Before we formally develop the theory of linear algebraic groups, we will
give some examples that should give an impression of what to expect from
this theory. We will also give an overview of the different types of algebraic
groups that we will (or will not) encounter.

1.1 First examples
Definition 1.1.1. Let k be a (commutative) field. Roughly speaking, an
algebraic group over k is a group that is defined by polynomials, by which we
mean that the underlying set is defined by a system of polynomial equations,
and also that the multiplication and the inverse in the group are given by
polynomials. If the underlying set is defined as a subset of kn (for some n),
then we call it an affine algebraic group, and one of the fundamental results
that we will prove later actually shows that every affine algebraic group is
a linear algebraic group in the sense that it can be represented as a matrix
group.

This definition admittedly is rather vague; we will later give a much
more precise definition, which will require quite some more background, so
the above definition will do for now. Some examples will clarify what we
have in mind.

Examples 1.1.2. (1) SLn.
If A = (aij) ∈ Matn(k) is an arbitrary matrix, then A belongs to SLn(k)
if and only if

detA =
∑

σ∈Symn

sgn(σ) · a1,σ(1) · · · an,σ(n) = 1,

and this is clearly a polynomial expression in the aij’s. (Note that we
have identified Matn(k) with kn

2 here.) Moreover, the multiplication of
matrices in SLn(k) is given by n2 polynomials, as is the inverse (because
the determinant of the matrices in SLn(k) is 1).
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(2) GLn.
If A = (aij) ∈ Matn(k) is an arbitrary matrix, then A belongs to GLn(k)
if and only if

detA =
∑

σ∈Symn

sgn(σ) · a1,σ(1) · · · an,σ(n) 6= 0.

This doesn’t look like a polynomial equation in the aij’s. Moreover, the
inverse looks problematic because it is given by a rational function. Luck-
ily, we can actually solve both problems simultaneously by Rabinowitch’s
trick :

GLn(k) =
{
(aij, d) ∈ kn

2+1 | det(aij) · d = 1
}
.

Observe that d plays the role of the inverse of the determinant of A; in
particular, the inverse of A now involves multiplying with d, which results
in a polynomial expression again.

(3) Gm.
The group Gm is defined as GL1, and it is simply called the multiplicative
group of k. Notice that the formula from above now simplifies to the
form

Gm(k) =
{
(s, t) ∈ k2 | st = 1

}
.

(4) Ga.
The group Ga is called the additive group of k, and is defined by

Ga(k) = k

(as a variety) with the addition in k as group operation. It is obvious that
this is an affine algebraic group. In order to view it as a linear algebraic
group, the addition has to correspond to matrix multiplication, which
can be realized by the isomorphism

(k,+) ∼= {( 1 a
1 ) | a ∈ k} .

1.2 The building bricks
We will now give an overview of five different types of algebraic groups, from
which all other algebraic groups are built up. For the sake of simplicity, we
will assume that char(k) = 0.
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1.2.1 Finite algebraic groups
Every finite group G can be realized as a subgroup of some GLn(k), via

G
Cayley rep.
↪−−−−−−→ Symn

permutation mat.
↪−−−−−−−−−→ GLn(k).

The group G is indeed defined by polynomials, simply because it is a finite
set. Indeed, a single element g ∈ G can clearly be defined by n2 linear equa-
tions, and a finite union of something that can be described with polynomial
equations, can again be described with polynomial equations1.

Such finite algebraic groups will be called constant finite algebraic groups.

1.2.2 Abelian varieties
Whereas affine algebraic groups are those algebraic groups that can be em-
bedded into affine space, abelian varieties are algebraic groups that can be
embedded into projective space.

Definition 1.2.1. An algebraic group is connected if it does not admit proper
normal subgroups of finite index, or equivalently, if every finite quotient is
trivial.

Definition 1.2.2. An abelian variety is a connected algebraic group which
is projective as an algebraic variety.

The one-dimensional abelian varieties are precisely the elliptic curves.
Abelian varieties are related to the integrals studies by Abel, and it is a
happy coincidence that all abelian varieties are commutative2.

1.2.3 Semisimple linear algebraic groups
Definition 1.2.3. Let G be a connected linear algebraic group. Then G is
simple if G is non-abelian and does not admit any proper non-trivial algebraic
normal subgroups. The groupG is called almost simple or quasisimple if Z(G)
is finite and G/Z(G) is simple.

Example 1.2.4. The group SLn (with n > 1) is almost simple. Indeed, the
center

Z =
{( a ...

a

) ∣∣∣ an = 1
}

1More formally, a finite union of algebraic varieties is again an algebraic variety; see
Chapter 4 later.

2This is a non-trivial fact, depending on the fact that a projective variety is complete.
See also Definition 10.2.1 below.
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is finite, and PSLn = SLn/Z is simple3.

Definition 1.2.5. Let G,H be linear algebraic groups. An isogeny from G to
H is a surjective morphism ϕ : G↠ H with finite kernel. Two linear algebraic
groups H1 and H2 are called isogenous if there exists a linear algebraic group
G and isogenies H1 ↞ G ↠ H2. Being isogenous is an equivalence relation
(exercise!).

The following classification result will certainly look very mysterious at
this point, and one of the main goals of this course is precisely to understand
the meaning of this major theorem.

Theorem 1.2.6. Let k be an algebraically closed field with char(k) = 0. Then
every almost simple linear algebraic group over k is isogenous to exactly one
of the following.

classical types



An

Bn

Cn

Dn

exceptional types



E6, E7, E8

F4

G2

The groups of type An are groups isogenous to the special linear group SLn+1;
the groups of type Bn are groups isogenous to the orthogonal group SO2n+1;
the groups of type Cn are groups isogenous to the symplectic group Sp2n; the
groups of type Dn are groups isogenous to the orthogonal group SO2n.

Definition 1.2.7. A linear algebraic group G is an almost direct product of
its subgroups G1, . . . , Gr if the product map

G1 × · · · ×Gr → G

(g1, . . . , gr) 7→ g1 · · · gr

is an isogeny.
3We are ignoring the subtle fact that PSLn is not even an algebraic group (but PGLn

is). See Remark 5.3.4(2) below.
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Example 1.2.8. The groupG = (SL2×SL2)/N whereN = {(I, I), (−I,−I)}
is an almost direct product of SL2 and SL2. Note, however, that it is not a
direct product of almost simple subgroups.

Definition 1.2.9. A linear algebraic group G is semisimple if it is an almost
direct product of almost simple subgroups.

We will later see a very different (but equivalent) definition in terms of
the radical of the group; see Definition 11.1.2 below.

Remark 1.2.10. The group GLn is not semisimple, but as we will see in a
moment, it is a so-called reductive group; these groups are not too far from
being semisimple (in a precise sense).

1.2.4 Groups of multiplicative type and tori
Definition 1.2.11. Let T be an algebraic subgroup of GL(V ) for some n-di-
mensional vector space V over k. Then T is of multiplicative type if it is
diagonalizable over the algebraic closure k, i.e. if there exists a basis for
V (k) = k

n such that T is contained in

Dn :=

{
A =

( ∗ 0...
0 ∗

) ∣∣∣ A is invertible
}
.

If in addition T is connected, then we call T an (algebraic) torus.

We also recall the corresponding definition for individual elements of a
group.

Definition 1.2.12. Let G ≤ GL(V ) be a linear algebraic group, and let
g ∈ G(k). Then g is diagonalizable if there exists a basis for V (k) such that
g ∈ Dn(k), and g is called semisimple if it is diagonalizable over k.

1.2.5 Unipotent groups
Definition 1.2.13. Let G be an algebraic subgroup of GL(V ) for some n-di-
mensional vector space V over k. Then G is unipotent if there exists a basis
for V (k) such that G is contained in

Un :=

{( 1 ∗ ∗
0

... ∗
0 0 1

)}
.

Definition 1.2.14. Let G ≤ GL(V ) be a linear algebraic group, and let
g ∈ G(k). Then g is unipotent if the following equivalent conditions are
satisfied:
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(i) g − 1 is nilpotent, i.e. (g − 1)N = 0 for some N ;
(ii) the characteristic polynomial χg(t) for g is a power of (t− 1);
(iii) all eigenvalues of g in k are equal to 1.

1.3 Extensions

1.3.1 Solvable groups
Definition 1.3.1. A linear algebraic group G is solvable if there is a chain
of algebraic subgroups

G = G0 ⊵G1 ⊵ · · ·⊵Gn−1 ⊵Gn = 1

such that each factor Gi/Gi+1 is abelian.
Examples 1.3.2. (1) The group Un is solvable.
(2) The group

Tn :=

{
A =

( ∗ ∗ ∗
0

... ∗
0 0 ∗

) ∣∣∣ A is invertible
}

is solvable; notice that Tn/Un
∼= Dn.

The following important result (which we will come back to later) shows
that when k is algebraically closed, every connected solvable algebraic group
can be realized as a group of upper triangular matrices.
Theorem 1.3.3 (Lie–Kolchin). Let k be an algebraically closed field, and let
G ≤ GL(V ) be a connected linear algebraic group. Then G is solvable if and
only if there is a basis for V (k) such that G ≤ Tn.

1.3.2 Reductive groups
Definition 1.3.4. A connected linear algebraic group is called reductive if
it does not admit any non-trivial connected unipotent normal subgroups.

When char(k) = 0, any reductive group is an extension of a semisimple
group by a torus:

1→ T → G→ G/T → 1,

where G/T is semisimple. This is no longer true for fields of positive char-
acteristic, but it is still almost true (in a precise sense); this has recently led
to the study of so-called pseudo-reductive groups [CGP15, CP16].
Example 1.3.5. The group GLn is reductive:

1→ Gm → GLn → PGLn → 1.

6



1.3.3 Disconnected groups
Recall that an algebraic group is disconnected if it admits an algebraic normal
subgroup of finite index > 1. We will give two different examples illustrating
that disconnected groups come up naturally in certain situations.

Examples 1.3.6. (1) The orthogonal group On is defined by

On(k) := {A ∈ GLn(k) | AtA = I}.

Since the determinant of an orthogonal matrix is always 1 or −1, the
special orthogonal subgroup SOn defined by

SOn(k) := {A ∈ On(k) | detA = 1}

is a normal subgroup of index 2:

1→ SOn → On
det−→ Z/2Z→ 1.

Therefore, the group On is not connected. (The group SOn is connected,
but that is certainly a non-trivial fact.)

(2) A matrix is called monomial if it has exactly one non-zero entry on each
row and each column. The group Monn defined by

Monn(k) := {A ∈ GLn | A is monomial}

is disconnected:

1→ Dn → Monn → Symn → 1.

Notice that this group arises naturally as the normalizer of Dn inside GLn.

1.4 Overview

We finish this introductary chapter by presenting an overview of how an
arbitrary algebraic group can be decomposed into smaller pieces that we are
more likely to understand. We assume that char(k) = 0.
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Ch
ap

te
r 2 Algebras

In order to build up the theory of linear algebraic groups, it will be essential
to have a good understanding of commutative k-algebras. We take the op-
portunity to introduce the theory of k-algebras in general (not restricting to
commutative algebras), since these algebras will allow us to give interesting
examples of certain types of linear algebraic groups anyway.

We will often use K for a commutative ring (always assumed to be a ring
with 1) and k for a commutative field.

2.1 Definitions and examples
Definition 2.1.1. Let K be a commutative ring.

(i) An algebra over K or a K-algebra is a (not necessarily commutative)
ring A with 1 which is also a K-module, such that the multiplication
in A is K-bilinear:

αx · y = x · αy = α(xy)

for all x, y ∈ A and all α ∈ K.
(ii) A morphism of K-algebras is a K-linear ring morphism.
(iii) A subalgebra of a K-algebra is a subring which is also a K-submodule.
(iv) A left ideal of a K-algebra A is a K-submodule I of A such that AI ⊆ I;

a right ideal is defined similarly. A two-sided ideal (or simply an ideal)
is a submodule which is simultaneously a left and right ideal.

(v) The center of a K-algebra A is the subalgebra

Z(A) := {z ∈ A | zx = xz for all x ∈ A}.

(vi) The natural map
η : K → A : α 7→ α · 1

is a ring morphism from K to Z(A), which is called the structure mor-
phism of A.

9



Remarks 2.1.2. (i) The structure morphism η is not necessarily injective,
and hence K is not always a subalgebra of A. (For instance, Z/nZ is
a Z-algebra.) On the other hand, if K = k is a field, then η is always
injective, and then we can consider k as a subalgebra of A by identifying
k with k · 1 ⊆ A.

(ii) Given a not necessarily commutative ring A with 1 and a ring morphism
η : K → Z(A), we can make A into a K-algebra by endowing it with
the K-module structure

α · x := η(α)x

for all α ∈ K and all x ∈ A; the map η is then precisely the structure
morphism of the K-algebra A.

(iii) It is also possible to define a K-algebra more generally as a K-module
A endowed with a K-bilinear multiplication, without assuming A to be
a ring. In particular, A might not have a unit 1, and A might not be
associative. If A has a unit 1, then it is called a unital K-algebra. These
not necessarily associative algebras turn up very often in the study of
the exceptional linear algebraic groups. For instance, each algebraic
group of type G2 can be realized as the automorphism group of a so-
called octonion algebra, which is a certain 8-dimensional non-associative
unital algebra.
Another important family of non-associative non-unital algebras is given
by the Lie algebras, which we will study in more detail in Chapter 7.

(iv) If K = k is a field, then any k-algebra A (in the general sense from
above) is in particular a vector space over k, with some basis (ui)i∈I .
In this case, the multiplication on A is completely determined by its
structure constants γijr ∈ k:

ui · uj =
∑
r∈I

γijrur,

for all i, j ∈ I, and where for fixed i and j, the constants γijr are
non-zero for finitely many r ∈ I only.

Definition 2.1.3. If every non-zero element of a K-algebra A has an inverse,
then we call A a skew field. Of course, this implies in particular that Z(A) is
a field, and A is a k-algebra for k = Z(A). (Notice that k might be different
from K, however, and K is not necessarily a field.) If in addition dimk A is
finite, then we call A a division algebra or a division ring1.

1Some care is needed, since some authors do not make this distinction between skew
fields and division rings. Most of the time, however, this should be clear from the context.
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Examples 2.1.4. Let K be a commutative ring.

(1) Every ring is a Z-algebra, and conversely.
(2) The set Tn(K) of all2 upper-triangular n by n matrices over K is a

K-algebra, with structure morphism

η : K → Tn(K) : α 7→ diag(α, . . . , α).

(3) Let V be a K-module, and A = EndK(V ). Then A is a K-module defined
by

(α · f)(x) := αf(x) for all x ∈ V,
for all α ∈ K and all f ∈ A. This K-module structure makes the ring A
into a K-algebra.
If V is free of rank n, then A ∼= Matn(K).

(4) Let M be a monoid, i.e. a set endowed with a binary associative operation
with a neutral element3. Let A be the free K-module over M , and endow
A with the multiplication induced by M . Then A is a K-algebra, which
we denote by A = KM , and which we call the monoid K-algebra induced
by M . If M = G is a group, then we call A = KG the group K-algebra
induced by G. We give some concrete examples.

(a) Let M = {1, x, x2, . . . }. Then M is a monoid which is not a group;
the corresponding monoid algebra KM is isomorphic to the polyno-
mial algebra K[x].

(b) Let M = 〈x〉 be an infinite cyclic group. Then the group algebra
KM is isomorphic to the algebra of Laurent polynomials K[x, x−1].

(c) Let M = 〈x〉 be a cyclic group of order n. Then KM ∼= K[x]/(xn −
1).

(d) Let M be the free monoid on {x1, . . . , xn}. Then KM is called the
free associative algebra on x1, . . . , xn, and is denoted byK〈x1, . . . , xn〉.

It is an easy but important fact that every finite-dimensional k-algebra
can be embedded into a matrix algebra. (This fact can be compared to
the Cayley representation for finite groups, which embeds an arbitrary finite
group into a symmetric group.)

Definition 2.1.5. Let A be a finite-dimensional k-algebra. A (matrix) rep-
resentation for A is a k-algebra morphism ρ : A→ Matr(k) for some natural
number r. If ρ is injective, then the representation is called faithful.

2including the non-invertible ones, so this is not the same as Tn(K) defined above.
3Informally, a monoid is a group without inverses.
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Theorem 2.1.6. Let A be a finite-dimensional k-algebra. Then A is iso-
morphic to a subalgebra of Matn(k), i.e. A has a faithful representation.

Proof. For each a ∈ A, the map

λa : A→ A : x 7→ ax

is an element of Endk(A) ∼= Matn(k). The corresponding map

λ : A→ Matn(k) : a 7→ λa

is an algebra morphism. Clearly, λa is the zero map only for a = 0, hence
the morphism λ is injective. □

The representation λ that we have constructed in the previous proof is
called the left regular representation for A. Of course, one can similarly define
the right regular representation for A.

2.2 Tensor products
In our future study of algebraic varieties, the tensor product of (commuta-
tive) k-algebras will be invaluable. In fact, in the category of commutative4

k-algebras, the tensor product turns out to be precisely the so-called co-
product, which already illustrates its importance. But first, we will have a
closer look at tensor products of K-modules in general (where K is still a
commutative ring with 1).

2.2.1 Tensor products of K-modules
Tensor products are intimately related to bilinear forms, and in fact, the
tensor product is, in a precise sense that we will describe below, the most
universal object to which a bilinear form from the pair U, V can map, in the
sense that every other bilinear map factors through the tensor product.

Definition 2.2.1. Let U and V be two K-modules. The tensor product of
U and V is defined to be a pair (T, p) consisting of a K-module T and a
K-bilinear map p : U × V → T , such that for every K-module W and every
K-bilinear map f : U × V → W , there is a unique K-module morphism

4It is not true that the tensor product is the coproduct in the category of all k-algebras.
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f ′ : T → W such that f = f ′ ◦ p.

U × V T

W

p

f
f ′

Notice that it is not immediately obvious that the tensor product exists
at all, but as we will see in a minute, it is not too hard to see that if it exists,
it is necessarily unique; we will denote T by U ⊗K V or by U ⊗ V if the ring
K is clear from the context (which is not always the case!). We will rarely
explicitly write down p, i.e. we will simply say that T = U⊗K V is the tensor
product of U and V .

Lemma 2.2.2. Let U and V be two K-modules. If the tensor product of U
and V exists, then it is unique.

Proof. The proof will only use the universality of the defining property; the
fact that U and V are K-modules will turn out to be irrelevant.

So assume that (T1, p1) and (T2, p2) are two tensor products of U and V .
We first invoke the universal property for T1 to obtain a (unique) morphism
f1 : T1 → T2 such that p2 = f1 ◦ p1; similarly, there is a unique morphism
f2 : T2 → T1 such that p1 = f2 ◦ p2. Hence

p1 = (f2 ◦ f1) ◦ p1 and p2 = (f1 ◦ f2) ◦ p2.

We now use the universal property for T1 again, but this time with W = T1
and f = p1. By the uniqueness aspect of the universal property, we get
that f2 ◦ f1 = idT1 , and similarly f1 ◦ f2 = idT2 . We conclude that f1 is
an isomorphism from T1 to T2, and hence the pairs (T1, p1) and (T2, p2) are
isomorphic.

U × V

T1

T2

p1

p2

f1 f2 U × V

T1

T1

p1

p1

id f2 ◦ f1

□

We will now show how to construct the tensor product of two K-modules;
this will at the same time prove the existence of the tensor product. The idea
is that we first consider a free object, from which we construct the tensor
product by modding out the required relations.

13



Construction 2.2.3. Let U and V be two K-modules. Define A to be the
free K-module over the set U × V . Now consider the submodule

B :=

〈(u+ u′, v)− (u, v)− (u′, v),

(u, v + v′)− (u, v)− (u, v′),

(αu, v)− α(u, v), (u, αv)− α(u, v)

∣∣∣∣∣ u, u′ ∈ U, v, v′ ∈ V, α ∈ K
〉
.

Finally, let T := A/B, and let p : U × V → T be the composition

p : U × V ↪→ A↠ T.

It is not too hard to check that the pair (T, p) satisfies the universal property
defining the tensor product, and hence T is indeed the tensor product U⊗KV .

Remarks 2.2.4. (i) We will usually write T = U ⊗K V , even though the
tensor product is in principle only defined up to isomorphism. Typically,
we have the above construction in mind when we write such an equality
(rather than an isomorphism). In particular, the image p(u, v) of a pair
(u, v) ∈ U × V under p will be written as u⊗ v.

(ii) It is a common beginners’ mistake to write an arbitrary element of
T = U ⊗K V as u⊗ v. These elements only generate T as a K-module,
and hence an arbitrary element of T is a finite sum

x =
∑
i

ui ⊗ vi,

where ui ∈ U and vi ∈ V .
(iii) The universal property of tensor products can conveniently be rephrased

by the isomorphism

HomK(U ⊗K V,W ) ∼= HomK(U,HomK(V,W )).

This property is known as adjoint associativity.

We now list a few properties of the tensor product, the proof of which we
leave to the reader.

Properties 2.2.5. Let U, V,W be K-modules. Then

(i) U ⊗ V ∼= V ⊗ U ;
(ii) U ⊗ (V ⊗W ) ∼= (U ⊗ V )⊗W ;
(iii) U ⊗ (V ⊕W ) ∼= (U ⊗ V )⊕ (U ⊗W );

14



(iv) U ⊗Kn ∼= Un;
(v) Kn ⊗Km ∼= Knm.

In fact, we can make properties (iv) and (v) more precise, as follows.

Proposition 2.2.6. Let U be a K-module and V a free K-module of rank n,
with basis (e1, . . . , en). Then every element x of U ⊗K V can be uniquely
written as

x =
n∑

i=1

ui ⊗ ei

with ui ∈ U .

Proof. First prove the statement for n = 1 using the universal property of
tensor products. Then deduce the general statement by induction on n, using
the distributive property 2.2.5(iii). We leave the details as an exercise. □

Definition 2.2.7. If f : U → V and g : U ′ → V ′ are two K-module mor-
phisms, then we define

f ⊗ g : U ⊗K U ′ → V ⊗K V ′ : u⊗ v 7→ f(u)⊗ g(v).

By the universal property defining tensor products, this is a well defined
K-module morphism.

Remark 2.2.8. If f : U → V is an injective K-module morphism, then the
induced morphism

f ⊗ id : U ⊗W → V ⊗W

is not always injective! (Consider for instance the map f : 2Z→ Z given by
inclusion, and let W = Z/2Z.) If K is a field, however, then f ⊗ id remains
injective.

In fact, this leads to an important notion: a K-module W is called flat
precisely when, for each injective morphism f : U → V of K-modules, the
induced morphism f ⊗ id : U ⊗W → V ⊗W is injective.

2.2.2 Tensor products of K-algebras
Recall that a K-algebra is a K-module equipped with a K-bilinear multipli-
cation (which is not necessarily associative and does not necessarily have a
neutral element). In fact, by the universal property of tensor products, we
can view the multiplication as a morphism

m : A⊗ A→ A.
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It is interesting to express the unit element and the associativity in terms
of this morphism m. The algebra A is associative if and only if the maps
m ◦ (m⊗ id) and m ◦ (id⊗m) from A⊗A⊗A to A coincide, i.e. if and only
if the following diagram commutes:

A⊗ A⊗ A A⊗ A

A⊗ A A

m⊗ id

id⊗m m

m

On the other hand, the algebra A is unital, with unit e ∈ A, if and only if

m(e⊗ x) = x = m(x⊗ e)

for all x ∈ A. This can be expressed in a more fancy fashion, using the
structure morphism η:

m ◦ (η ⊗ id) = πA = m ◦ (id⊗ η),

where πA is the natural isomorphism from K ⊗K A to A. Equivalently, the
following diagrams commute:

K ⊗ A

A

A⊗ A

A

η ⊗ id

πA m

A⊗K

A

A⊗ A

A

id⊗ η

πA m

With this in mind, we can give an intrinsic description of the tensor
product of two K-algebras.

Definition 2.2.9. Let A and B be two K-algebras, with multiplication mor-
phisms m and n, respectively. Let C = A ⊗K B as a K-module. In order
to make C into a K-algebra, it only remains to describe the multiplication
morphism z. First, define5 a morphism

τ : A⊗B → B ⊗ A : a⊗ b 7→ b⊗ a
5Recall that an arbitrary element of A ⊗ B is of the form

∑
i ai ⊗ bi, but in order to

describe a morphism from A⊗B to a third module M , it suffices to prescribe the morphism
on the set of generators {a⊗ b | a ∈ A, b ∈ B}.
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for all a ∈ A and all b ∈ B. Now let

z := (m⊗ n) ◦ (idA ⊗ τ ⊗ idB) : A⊗B ⊗ A⊗B → A⊗B.

Explicitly, if a1, a2 ∈ A and b1, b2 ∈ B, then the multiplication satisfies

(a1 ⊗ b1) · (a2 ⊗ b2) = a1a2 ⊗ b1b2,

and by K-bilinearity, this formula also uniquely defines the multiplication of
two arbitrary elements of A⊗B.
Examples 2.2.10. (1) Let A be an arbitrary K-algebra. We claim that

A⊗K Matn(K) ∼= Matn(A).

Indeed, note that this isomorphism certainly holds as K-modules. By
Proposition 2.2.6, every element of A⊗Matn(K) can be uniquely written
as

x =
n∑

i,j=1

aij ⊗ eij

with aij ∈ A, and where (eij) is the canonical basis of Matn(K). By the
definition of the tensor product of K-algebras, it is now clear that the
K-module isomorphism

ϕ : A⊗Matn(K)→ Matn(A) :
n∑

i,j=1

aij ⊗ eij 7→ (aij)

is indeed a K-algebra isomorphism.
(2) A special case of the previous example is obtained if A is itself a full

matrix algebra:

Matr(K)⊗K Matn(K) ∼= Matrn(K).

(3) Consider the polynomial algebra K[x] in one variable. Then

K[x]⊗K K[x] ∼= K[x, y],

the polynomial algebra over K in two variables.
(4) Another important example is given by extension of scalars. Let A be

a k-algebra (where k is a field), and suppose that E/k is a field exten-
sion. Then A⊗k E is not only a k-algebra, but also an E-algebra, with
dimE(A ⊗k E) = dimk A. This algebra is often simply denoted by AE.
Notice that by Proposition 2.2.6, if (e1, . . . , en) is a basis for A as a
k-vector space, then (e1⊗ 1, . . . , en⊗ 1) is a basis for AE as an E-vector
space.
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r 3 Categories

Category theory often looks quite daunting when first encountered. It is a
theory that looks too abstract to be meaningful. However, as we will see,
it is actually very powerful when used appropriately. It is not only a useful
“language”, but it also allows to switch from one interpretation to another
in a mathematically rigorous fashion.

We will later introduce linear algebraic groups as functors, which go from
one category to another. This will allow us to switch viewpoints between
linear algebraic groups as group functors on the one hand, and Hopf algebras
on the other hand. The abstract tool that will connect these two viewpoints
is the Yoneda Lemma, which is sometimes referred to as a “deep triviality”.

3.1 Definition and examples
Definition 3.1.1. A category C consists of a class ob(C) of objects and a
class mor(C) or hom(C) of morphisms. Each morphism α ∈ hom(C) has two
associated objects, called the source (X ∈ ob(C)) and the target (Y ∈ ob(C)),
and we write

α : X → Y or X
α−−→ Y.

The class of all morphisms with source X and target Y will be denoted by
hom(X,Y ). Moreover, the category C comes equipped with a composition of
morphisms

hom(X,Y )× hom(Y, Z)→ hom(X,Z) : (α, β) 7→ α · β = αβ.

(We sometimes write β ◦ α for αβ.) In order to be a category, the objects,
morphisms and composition have to satisfy the following two axioms:

Associativity of composition. If X α−−→ Y
β−−→ Z

γ−−→ T , then (αβ)γ =
α(βγ).

Identity morphisms. For each X ∈ ob(C) there is an idX ∈ hom(X,X)
such that for each X

α−−→ Y we have idX · α = α = α · idY .
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Remarks 3.1.2. (i) Observe that ob(C) and hom(C) are classes and not
sets. This is important from a set-theoretic point of view, but we will
not have to worry about these subtleties. It is worth pointing out that
many categories are locally small in the sense that hom(X,Y ) is a set
for all X,Y ∈ ob(C). If this is the case, then it is natural (and often
part of the definition) to require1 in addition that

hom(X,Y ) ∩ hom(X ′, Y ′) = ∅ unless X = X ′ and Y = Y ′.

(ii) It is customary to say that a morphism α ∈ hom(X,Y ) is a morphism
from X to Y . Some care is needed, however, since morphisms might
behave very differently from ordinary maps in the set-theoretic sense.

Examples 3.1.3. (1) We list some common categories.

Name Objects Morphisms
Set sets maps
Grp groups group morphisms
AbGrp abelian groups group morphisms
Top topological spaces continuous maps
Top0 top. spaces with base pt. cont. maps preserving base pts.
ModR right R-modules R-module morphisms
RMod left R-modules R-module morphisms
Ring rings with 1 ring morphisms preserving 1
Rng rings ring morphisms
Veck vector spaces over k linear maps
k-alg comm. assoc. k-algebras algebra morphisms

(2) There exist categories of a very different nature. For instance, let M be
an arbitrary monoid. Then we can view M as a category with one object
(often denoted by ∗), such that the morphisms in the category correspond
to the elements of M and composition of morphisms corresponds to the
monoid operation in M .

Definition 3.1.4. (i) Let X α−−→ Y . A morphism β : Y → X such that
αβ = idX and βα = idY is called an inverse for α. The inverse of α is
unique if it exists, and is then denoted by α−1. In this case, α is called
an isomorphism, and X and Y are isomorphic objects.

(ii) A category C is called small if both ob(C) and hom(C) are sets (rather
than classes). For instance, the categories from Example 3.1.3(2) are
small.

1Observe that this requirement only makes sense because hom(X,Y ) and hom(X ′, Y ′)
are sets, and hence can be intersected.
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(iii) A subcategory of a category C is a collection of objects and morphisms
from C that form a category under the composition of C. In particular,
if D is a subcategory of C, then

homD(X,Y ) ⊆ homC(X,Y )

for all X,Y ∈ ob(D).
(iv) If D is a subcategory of C such that

homD(X,Y ) = homC(X,Y )

for all X,Y ∈ ob(D), then we call D a full subcategory of C. For
instance, AbGrp is a full subcategory of Grp.

(v) If C is a category, then we can define its opposite category Cop by “re-
versing the arrows”: ob(Cop) = ob(C), and for all X,Y ∈ ob(C), we
declare

homCop(Y,X) := homC(X,Y ).

For clarity, we denote the morphism in Cop corresponding to the mor-
phism α ∈ hom(X,Y ) by αop ∈ hom(Y,X). The composition in Cop is
also reversed: (αβ)op = βopαop for all suitable α, β ∈ hom(C). Observe
that for such a category, the typical intuition of elements of hom(X,Y )
as “morphisms from X to Y ” is meaningless!

3.2 Functors and natural transformations
Informally, functors are morphisms between categories. We distinguish be-
tween “arrow preserving” (covariant) and “arrow reversing” (contravariant)
functors.

Definition 3.2.1. Let C,D be two categories.

(i) A (covariant) functor F from C to D is a map2 associating with each
object X ∈ ob(C) an object F (X) ∈ ob(D), and with each morphism
α ∈ homC(X,Y ) a morphism F (α) ∈ homD(F (X), F (Y )), such that:

• F (αβ) = F (α)F (β) (whenever this makes sense);
• F (idX) = idF (X) for all X ∈ ob(C).

2Formally, a functor F is a pair of maps (Fob, Fhom), where Fob : ob(C) → ob(D) and
Fhom : hom(C)→ hom(D).
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(ii) A contravariant functor F from C to D is a map associating with each
object X ∈ ob(C) an object F (X) ∈ ob(D), and with each morphism
α ∈ homC(X,Y ) a morphism F (α) ∈ homD(F (Y ), F (X)), such that:

• F (αβ) = F (β)F (α) (whenever this makes sense);
• F (idX) = idF (X) for all X ∈ ob(C).

Examples 3.2.2. (1) Let F : Ring → AbGrp be given by mapping each
ring (R,+, ·) to the corresponding additive group (R,+), and each ring
morphism to the corresponding group morphism. Such a functor is called
a forgetful functor since it “forgets” some of the underlying information
(in this case the multiplication).

(2) Let F : Grp → Grp be given by mapping each group G to its derived
subgroup [G,G], and each morphism to its restriction to the derived
subgroup. Then F is a covariant functor.

(3) There is no functor F : Grp → Grp with the property that each group
G is mapped to its center Z(G). (This is an interesting exercise; this is
not completely obvious at first sight.)

(4) Let k be a field. There is a contravariant functor F : Veck → Veck which
assigns to each vector space its dual, and to each linear transformation
its dual (or transpose) transformation.

(5) Let G be a group, and let C be the corresponding category with a sin-
gle object ∗, as defined in Example 3.1.3(2). Then a covariant functor
F : C → Set assigns a set F (∗) to the object ∗, and assigns to each
morphism in C (i.e., to each element g ∈ G) a map F (g) from F (∗) to
itself. Since g is an invertible morphism in C, also F (g) is an invert-
ible morphism in Set, in other words, F (g) is a permutation of F (∗).
Since F (gh) = F (g)F (h) for all g, h ∈ G, we see that F describes a
permutation representation of G.
Conversely, every permutation representation of G gives rise to a functor
from C to Set.

Remark 3.2.3. Very often, we will write down functors by indicating what
they do on objects and assume that it is clear what they do on morphisms.
To emphasize this, it is customary to use the notation ⇝. For instance, the
functor from Example 3.2.2(2) will be denoted by

F : Grp→ Grp : G⇝ [G,G].

We now go one step further in the abstractness, and we will introduce
natural transformations, which are some kind of morphisms between functors.

22



Definition 3.2.4. (i) Let C,D be two categories, and F,G two covariant
functors from C to D. A natural transformation T from F to G is a
family of D-morphisms

TX : F (X)→ G(X)

such that for each X
α−−→ Y , the diagram

F (X) F (Y )

G(X) G(Y )

F (α)

TX TY

G(α)

commutes. (The definition for natural transformations between con-
travariant functors is similar.)

(ii) A natural transformation which has an inverse (in the obvious sense),
is called a natural isomorphism. If T : F → G is a natural isomorphism
between the functors F and G, then F and G are called isomorphic.

(iii) Two categories C,D are isomorphic if there exist functors F : C → D
and G : D → C such that FG = 1C and GF = 1D. Although this
definition looks natural, this notion is (too) restrictive.

(iv) Two categories C,D are equivalent if there exist functors F : C → D and
G : D → C such that FG and 1C are isomorphic and GF and 1D are
isomorphic.

(v) Two categories C,D are anti-equivalent or dual if there exist contravari-
ant functors F : C → D and G : D → C such that FG and 1C are
isomorphic and GF and 1D are isomorphic.

Example 3.2.5. The categories AbGrp and ModZ are isomorphic. On
the other hand, consider the categories FVeck of finite-dimensional vector
spaces over k, with linear transformations as morphisms, and the category
FColk of the column spaces kn for all finite n, with linear transformations as
morphisms. Then FVeck and FColk are certainly not isomorphic (indeed,
FColk is a small category but FVeck is not), but they are equivalent. (Work
out the details as an exercise. This becomes easier if you use Lemma 3.2.8
below.)
Definition 3.2.6. Let F : C → D be a functor. Then for each pair of objects
X,Y ∈ ob(C), the functor F induces a map

FX→Y : homC(X,Y )→ homD(F (X), F (Y )).
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(i) The functor F is faithful if FX→Y is injective for all X,Y ∈ ob(C).
(ii) The functor F is full if FX→Y is surjective for all X,Y ∈ ob(C).
(iii) The functor F is fully faithful if FX→Y is bijective for all X,Y ∈ ob(C).
(iv) The functor F is dense (also called essentially surjective) if each Y ∈

ob(D) is isomorphic to an object F (X) for some X ∈ ob(C).
(v) The functor F is an equivalence if and only if F is fully faithful and

dense.
Definition 3.2.7. The notions “faithful”, “full”, “fully faithful” and “dense”
can be defined similarly for a contravariant functor F : C → D. The functor
F is then called a duality or an anti-equivalence if F is fully faithful and
dense.
Lemma 3.2.8. (i) Two categories C and D are equivalent (in the sense of

Definition 3.2.4(iv)) if and only if there exists an equivalence from C
to D.

(ii) Two categories C and D are dual (in the sense of Definition 3.2.4(v))
if and only if there exists a duality from C to D.

Proof. This is left to the reader as a rather lengthy exercise. Some care is
needed, though: to explicitly construct the “inverse” functor of an equiva-
lence, the axiom of choice is needed. We invite the interested reader to look
up the fine details (such as a possible extension to anafunctors to avoid the
axiom of choice). □
Lemma 3.2.9. Let C,D be two categories, and let F be a fully faithful functor
from C to D. Then F is injective on the isomorphism classes of objects, i.e.

F (X) ∼= F (Y ) ⇐⇒ X ∼= Y

for all X,Y ∈ ob(C).

Proof. Assume that F (X) ∼= F (Y ); then there exist morphisms

F (X)
γ−−→ F (Y ) and F (Y )

δ−−→ F (X)

such that γδ = idF (X) and δγ = idF (Y ). Since F is full, γ = F (α) and
δ = F (β) for certain morphisms

X
α−−→ Y and Y

β−−→ X.

It follows that αβ and idX are two morphisms from X to X which are mapped
by F to the morphism idF (X); since F is faithful, it follows that αβ = idX .
Similarly βα = idY , and we conclude that X ∼= Y . □
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3.3 The Yoneda Lemma
The Yoneda Lemma is a quite general abstract result in category theory that
almost looks too abstract to be useful, but as we will see, it has very powerful
consequences. The idea is that instead of studying the category C directly,
we study the functors from C to Set, and Set is of course a category that we
understand very well. We can think of such a functor as a “representation”
of C, very much like the Cayley representation tells us how we can understand
a group3 by considering it as a collection of permutations, i.e. a collection of
isomorphisms in the category Set.

This general idea of a representation is caught by the notion of repre-
sentable functors, which we now define.

Definition 3.3.1. Let C be a locally small4 category.

(i) Every object A ∈ ob(C) defines a functor

hA : C → Set

given on objects by

X 7→ homC(A,X)

and on morphisms by(
X

f−−→ Y
)
7→

(
homC(A,X)→ homC(A, Y )

g 7→ g · f

)
.

(ii) A functor F : C → Set is called representable if there is an object A ∈
ob(C) such that F is isomorphic to hA; we say that F is represented by
the object A. As we will see in Corollary 3.3.4(ii) below, a representable
functor is represented by a unique object (up to isomorphism).

(iii) Every morphism B
α−−→ A defines a natural transformation

Tα : hA → hB

via

Tα
X : hA(X) = homC(A,X)→ hB(X) = homC(B,X) : g 7→ α · g.

3Remember that every group can be made into a category with a single object, and
in this sense the Yoneda Lemma is really a generalization of Cayley’s Theorem. See
Example 3.2.2(5).

4Recall that C is locally small if the classes homC(A,B) are sets for all objects A,B.
This condition is necessary to ensure that the functors hA end up in Set.
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This is indeed a natural transformation:

hA(X) hA(Y )

hB(X) hB(Y )

hA(f)

Tα
X Tα

Y

hB(f)

g g · f

α · g (α · g) · f = α · (g · f)

Conversely, if T : hA → hB is a natural transformation, then

α := TA(idA) ∈ hB(A)

defines a morphism B
α−−→ A.

(iv) More generally, let F : C → Set be a functor, and A ∈ ob(C). Every
natural transformation T : hA → F defines an element

aT := TA(idA) ∈ F (A).

Conversely, for each a ∈ F (A) we define a natural transformation
T a : hA → F given by

T a
X : hA(X)→ F (X) : g 7→ F (g)(a). (3.1)

Observe that g ∈ homC(A,X) and hence F (g) ∈ homSet(F (A), F (X)),
so the element F (g)(a) does indeed belong to F (X). Check for yourself
that T a is a natural transformation.

We are now ready to state the Yoneda Lemma.

Theorem 3.3.2 (The Yoneda Lemma). Let C be a locally small category,
F : C → Set be a functor, and A ∈ ob(C). The map

ξ : Nat(hA, F )→ F (A) : T 7→ aT

is a bijection; its inverse is given by the map

ψ : F (A)→ Nat(hA, F ) : a 7→ T a.

This bijection is natural both in A and in F .
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Proof. We first show that ξ · ψ is the identity. So let T ∈ Nat(hA, F ) be
arbitrary; then for each g ∈ hA(X) = homC(A,X), we have a commutative
diagram

hA(A) hA(X)

F (A) F (X)

hA(g)

TA TX

F (g)

idA g

aT F (g)(aT ) = TX(g)

(3.2)

showing that each TX coincides with T aT
X , and hence the natural transforma-

tions T and T aT are equal.
Next, we show that ψ · ξ is the identity. So let a ∈ F (A) be arbitrary;

then
aTa = T a

A(idA) = F (idA)(a) = idF (A)(a) = a,

proving that ψ · ξ = idF (A) as claimed.

We now show that ξ is natural in A, i.e. if A f−−→ B, then the following
diagram has to commute.

Nat(hA, F ) F (A)

Nat(hB, F ) F (B)

ξ

F (f)

ξ

T aT

T̃ bT̃
?
= F (f)(aT )

where the natural transformation T̃ is obtained from T by composition
with f , i.e. for each object X we have

T̃X : hB(X)→ F (X) : g 7→ TX(fg).

Observe that F (f)(aT ) = TB(f) by the previous commutative diagram (3.2).
On the other hand,

bT̃ = T̃B(idB) = TB(f · idB) = TB(f),
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proving that the diagram does indeed commute.
We finally show naturality in F , i.e. if F and G are two functors from C

to Set, and U ∈ Nat(F,G) is a natural transformation from F to G, then
the following diagram has to commute:

Nat(hA, F ) F (A)

Nat(hA, G) G(A)

ξ

· U UA

ξ

T aT

T̃ aT̃
?
= UA(aT )

where the natural transformation T̃ is obtained from T by composition
with U , i.e. for each object X we have

T̃X : hA(X)→ G(X) : g 7→ UX(TX(g)).

It follows that

aT̃ = T̃A(idA) = UA(TA(idA)) = UA(aT ),

proving that the diagram does indeed commute, and finishing the proof of
the theorem. □

An important special case of the Yoneda Lemma is given by the following
corollary, which establishes some kind of duality between morphisms and
natural transformations.
Definition 3.3.3. Let C be a locally small category. The functor category C∨
(also denoted by SetC) is the category with as objects the functors from C to
Set, and as morphisms the natural transformations between these functors.
Its full subcategory of representable functors is sometimes denoted by C∨rep.
Corollary 3.3.4. Let C be a locally small category.

(i) For each pair of objects A,B ∈ ob(C), there is a natural bijection

Nat(hA, hB) ' homC(B,A).

In particular, there is a contravariant fully faithful functor

C → C∨ : A⇝ hA,

and hence C and C∨rep are dual categories.

28



(ii) The functors hA and hB are isomorphic if and only if A and B are
isomorphic objects.

Proof. The first statement is nothing else than the Yoneda Lemma with
F = hB. The second statement now follows from Lemma 3.2.9. □

Remark 3.3.5. A particularly colorful way to express what Yoneda’s Lemma
does, is given by the following quote (due to Ravi Vakil) that I saw on
MathOverflow:

You work at a particle accelerator. You want to understand some
particle. All you can do are throw other particles at it and see what
happens. If you understand how your mystery particle responds
to all possible test particles at all possible test energies, then you
know everything there is to know about your mystery particle.
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r 4 Algebraic geometry

It is of course impossible to give a decent introduction to algebraic geometry
in a single chapter of this course, but luckily the amount of algebraic geom-
etry that we will require is rather limited. In particular, we will mainly be
dealing with affine varieties and affine schemes, and we will have little need
for developing the general theory of varieties or schemes formed by gluing
together affine parts through the machinery of sheaves.

On the other hand, we will need to develop the basic intuition behind al-
gebraic geometry, which consists precisely of relating algebraic objects (com-
mutative k-algebras) and geometric objects (affine varieties, or more gener-
ally, affine schemes). This fundamental relationship will be continued and
enriched when we will be dealing with affine algebraic groups in the next
chapter.

4.1 Affine varieties
During this section, we will assume that k is a commutative field, and all
rings will be assumed to be commutative rings with 1. We will be dealing
with the category

k-alg := category of commutative, associative k-algebras with 1.

Let An be the k-algebra
An := k[t1, . . . , tn]

of polynomials over k in n variables; we can think of An geometrically as the
algebra of k-valued polynomial functions on the affine space kn.
Definition 4.1.1. (i) An affine variety1 is a subset of kn defined as the

common zeroes of a collection of polynomials in An. More precisely,
let S ⊆ An be any collection of polynomials; then we define the affine
variety V (S) as

V (S) := {x ∈ kn | f(x) = 0 for all f ∈ S}.
1Some authors require affine varieties to be irreducible, and refer to our affine varieties

as (affine) algebraic sets instead.
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(ii) Conversely, if X ⊆ kn is an arbitrary subset of the affine space kn, then
we set

I(X) := {f ∈ An | f(x) = 0 for all x ∈ X};

then I(X) is an ideal in An, which we refer to as the ideal of polynomials
vanishing on X.

Every affine variety is defined by a finite number of polynomials:

Theorem 4.1.2 (Hilbert’s Basis Theorem). Every ideal I ⊴ An is finitely
generated.

Proof omitted. □

Lemma 4.1.3. Let I, J be two ideals in An, and let C be any collection of
ideals in An. Then:

(i) if I ⊆ J , then V (I) ⊇ V (J);
(ii) V (I) ∪ V (J) = V (I ∩ J) = V (IJ);
(iii)

⋂
I∈C V (I) = V (〈I | I ∈ C〉);

(iv) V ((0)) = kn and V ((1)) = ∅.

Proof. The only not completely trivial part is (ii). First, observe that I and
J both contain I ∩ J , which in turn contains IJ ; so (i) implies that

V (I) ∪ V (J) ⊆ V (I ∩ J) ⊆ V (IJ).

Now let x ∈ V (IJ) be arbitrary, and assume that x 6∈ V (I). Then there
is some f ∈ I with f(x) 6= 0. On the other hand, for each g ∈ J we have
fg ∈ IJ , and hence f(x)g(x) = 0. It follows that g(x) = 0 for each g ∈ J ,
hence x ∈ V (J). □

An immediate consequence of the previous lemma is that the affine vari-
eties make the affine kn into a topological space.

Definition 4.1.4. The sets of the form V (I) ⊆ kn are the closed sets of a
topology on kn, which we call the Zariski topology. (Indeed, Lemma 4.1.3
tells us that the union of a finite number of closed sets is again closed, that
the intersection of an arbitrary collection of closed sets is again closed, and
that the empty space and the whole space are closed.) Moreover, every affine
variety V (I) inherits this topology of kn, which we also refer to as the Zariski
topology on V (I).
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Lemma 4.1.5. The open sets of the form

D(f) := {x ∈ kn | f(x) 6= 0}

for f ∈ An form a basis for the Zariski topology on kn; these sets D(f) are
called the principal open sets (or simply the principal opens).

Proof. This follows from the definitions, since every closed set can be written
as the intersection of closed sets of the form V (f), and hence every open set
can be written as the union of open sets of the form D(f). (In fact, by
Hilbert’s Basis Theorem 4.1.2, every open set is the finite union of principal
opens.) □

Notice that for every set of polynomials S ⊆ An, we have the inclusion
S ⊆ I(V (S)), and conversely, for every subset X ⊆ kn of the affine space,
the inclusion X ⊆ V (I(X)) holds. It is natural to ask when equality holds.
Of course, we have X = V (I(X)) precisely when X is an affine variety, i.e.
when X is closed in the Zariski topology; in fact, for general X ⊆ kn, the set
V (I(X)) is precisely the closure X of X in the Zariski topology.

The question when S = I(V (S)) is more interesting. Assume that I is
an ideal of the form I(V ) for some subset V ⊆ kn. Observe that I has the
property that whenever fm ∈ I for some f ∈ An and some m ≥ 1, then
f ∈ I. Such an ideal is called a radical ideal.

Definition 4.1.6. Let I ⊴R be an ideal in some ring2 R. Define the radical
of I as the ideal

rad I :=
√
I := {r ∈ R | rm ∈ I for some m ≥ 1}.

The ideal I is called a radical ideal when I = rad I.

Radical ideals in noetherian rings behave nicely:

Theorem 4.1.7 (Lasker–Noether Theorem). Every radical ideal I in a
noetherian ring is the intersection of a finite number of prime ideals. More-
over, there is a unique irredundant3 intersection into prime ideals up to
reordering.

Proof omitted. □
2Remember that our rings are commutative rings with 1.
3An intersection of sets A1 ∩ · · · ∩An is called irredundant if removing any of the Ai’s

changes the intersection.
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Remark 4.1.8. The Lasker–Noether Theorem states more generally that
every ideal in a noetherian ring R is a finite intersection of primary ideals,
i.e. of ideals I such that in the ring R/I, each zero divisor is nilpotent. We
will not need this more general statement.

For algebraically closed fields, the observation that the ideals of the form
I(V ) are radical is the only required restriction.

Theorem 4.1.9 (Hilbert’s Nullstellensatz). Let k be an algebraically closed
field, and let I ⊴ An be an ideal. Then I(V (I)) = I if and only if I is a
radical ideal.

Proof. We will omit the proof. There exist various rather different proofs;
notice that by the Lasker–Noether Theorem, it suffices to consider the case
when I is a prime ideal. □

Remark 4.1.10. The assumption for k to be algebraically closed, is essential.
For instance, consider the principal ideal I = (x2 + y2 + 1) in R[x, y]. Then
V (I) = ∅, and hence I(V (I)) = R[x, y] 6= I.

Corollary 4.1.11. Let k be an algebraically closed field. The rule

I 7→ V (I)

is an inclusion-reversing bijection between radical ideals in An and affine
varieties in kn. Maximal ideals correspond to points, and are thus of the
form

M = (t1 − a1, . . . , tn − an).

Every affine variety can be decomposed into irreducible affine varieties.
In order to make this notion precise, we have to introduce some topological
terminology.

Definition 4.1.12. Let X be a topological space.

(i) We call X connected if there are no non-empty open subspaces U1, U2 ⊆
X such that X = U1 ∪ U2 and U1 ∩ U2 = ∅.

(ii) We call X irreducible if there are no non-empty open subspaces U1, U2 ⊆
X such that U1∩U2 = ∅, i.e., every two non-empty open subspaces of X
intersect non-trivially.

(iii) Let U ⊆ X. Then we call U connected, resp. irreducible, if it is con-
nected, resp. irreducible in the subspace topology induced by X.

(iv) An irreducible component of X is a maximal irreducible subset. Notice
that irreducible components are always closed.
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Clearly every irreducible space is also connected, but the converse is not
true.

Example 4.1.13. Consider the real line X = R with the ordinary real
topology. Then X is connected, but is certainly not irreducible; there are
plenty of open subspaces intersecting trivially.

On the other hand, consider the real line Y = R equipped with the
Zariski topology. Then Y is irreducible. Indeed, every closed subspace of
Y is a finite set, and hence any two open subspaces are cofinite and hence
intersect non-trivially.

Lemma 4.1.14. Let X be a topological space. The following conditions are
equivalent:

(a) X is irreducible.
(b) X cannot be written as the union of two closed proper subsets.
(c) Every non-empty open subset of X is dense.

Proof. Exercise. □

Observe that when U is itself a closed subspace of X, then U is irreducible
if and only if U cannot be written as the union of two closed subspaces of X
different from U .

When k is algebraically closed, the irreducible affine varieties correspond
to prime ideals.

Lemma 4.1.15. Assume that k is an algebraically closed field. Let I be a
radical ideal in An. Then V (I) is irreducible if and only if I is a prime ideal.

Proof. This follows from the Lasker–Noether Theorem 4.1.7, but we will give
a direct proof instead. Assume first that V (I) is irreducible, and let f, g ∈ An

such that fg ∈ I. Then V = V (I) ⊆ V (fg) = V (f) ∪ V (g), i.e.

V =
(
V ∩ V (f)

)
∪
(
V ∩ V (g)

)
.

Since V is irreducible, we have either V ⊆ V (f) or V ⊆ V (g) (or both), and
hence, by Corollary 4.1.11, f ∈ I or g ∈ I.

Conversely, assume that I is prime, and that V = V (I1) ∪ V (I2) for
certain radical ideals I1 and I2. By Corollary 4.1.11 again, this implies that
I ⊆ I1 and I ⊆ I2. Assume that V 6= V (I1). Then I 6= I1, so we can pick
some f ∈ I1 \ I. For all g ∈ I2, we now have fg ∈ I since fg vanishes on
V (I1) ∪ V (I2); because I is prime, we must have g ∈ I. This shows that
I2 ⊆ I, and hence V = V (I2), proving that V is irreducible. □
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Corollary 4.1.16. Every affine variety V is a finite union of irreducible
affine varieties; these irreducible affine varieties are uniquely determined,
and are precisely the irreducible components of V .

Proof. This follows from the Lasker–Noether Theorem 4.1.7. □

4.2 The coordinate ring of an affine variety
In this section, we will always assume that k is an algebraically closed field.
By Hilbert’s Nullstellensatz (or its Corollary 4.1.11), there is a bijective cor-
respondence between affine varieties (geometric objects) and radical ideals
(algebraic objects).

We will take this correspondence even further. To each affine k-variety,
we will associate an algebraic object, namely its coordinate ring (which will
be a k-algebra). As we will soon see, this algebra carries all information of
the geometric object, and in fact, we will often jump back and forth between
the geometric objects and the algebraic objects. We will make this corre-
spondence very strong and formal: these objects will form dual categories.

Definition 4.2.1. Let V be an affine variety in kn, and let I = I(V ) ⊴ An

the corresponding ideal of polynomials vanishing on V . Then the restrictions
of the elements of An to the set V form a ring A, called the ring of regular
functions on V or the coordinate ring or coordinate algebra of V ; it is denoted
by A = k[V ] or by A = O[V ]. Explicitly,

k[V ] = O[V ] = An/I(V ),

since two elements of An restricted to V coincide if and only if their difference
is zero on V , i.e. belongs to I(V ).

Proposition 4.2.2. Let V be an affine variety in kn, and I = I(V )⊴ An.

(i) The k-algebra A = k[V ] is finitely generated and reduced, i.e. does not
contain non-zero nilpotent elements.

(ii) There is a bijection

V → homk-alg(A, k) : x 7→ ex,

where for each x ∈ V , the evaluation morphism ex is defined by

ex : A→ k : f 7→ f(x).
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Proof. (i) The k-algebra A is a quotient of An, which is finitely generated;
hence A is finitely generated as well. Assume that f ∈ A is a nilpotent
element, i.e. fN = 0 for some positive integer N . Let f̃ be an element
of An representing f ∈ An/I; then f̃N ∈ I. Since I is a radical ideal, it
follows that f̃ ∈ I, and hence f = 0.

(ii) Observe that for each x ∈ V , the evaluation morphism ex is indeed a
k-algebra morphism from A to k. We will show that the map x 7→ ex
is a bijection.
To show injectivity, let ti ∈ An be the i-th coordinate map (for each i),
and let si be the image of ti in A = An/I. We will show that the
element x is uniquely determined by the morphism ex. Indeed, let
x = (x1, . . . , xn) ∈ V ; then

ex(si) = si(x) = ti(x) = xi,

and hence
x =

(
ex(s1), . . . , ex(sn)

)
.

To show surjectivity, let α ∈ homk-alg(A, k) be arbitrary, and define

x :=
(
α(s1), . . . , α(sn)

)
∈ kn.

Let α̃ ∈ homk-alg(An, k) be given by the composition

An
proj−−→ An/I = A

α−−→ k;

then α(si) = α̃(ti) for all i. For each f ∈ I, we have α̃(f) = 0, and
hence

f(x) = f
(
α̃(t1), . . . , α̃(tn)

)
= α̃(f) = 0

because α̃ is a k-algebra morphism. We conclude that x ∈ V (I) = V ,
and ex = α. □

Conversely, every finitely generated reduced k-algebra arises from an
affine variety:

Proposition 4.2.3. Let A be a finitely generated reduced k-algebra. Then
there is an affine variety X with coordinate ring A.

Proof. Let Y be the set Y := homk-alg(A, k); we will endow Y with the
structure of an affine variety. Assume that the k-algebra A is generated by
some finite set {s1, . . . , sn}, and define

ϕ : Y → kn : α 7→
(
α(s1), . . . , α(sn)

)
.
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Observe that ϕ is injective because s1, . . . , sn generate A. On the other hand,
let An = k[t1, . . . , tn] and let ϕ∗ be the k-algebra morphism defined by

ϕ∗ : An → A : ti 7→ si

for each i. Then ϕ∗ is surjective because A is generated by s1, . . . , sn. If we
denote its kernel by I, then A ∼= An/I; note that I is a radical ideal because
A is reduced.

Let X = imϕ ⊆ kn; it remains to show that X = V (I). Notice that this
will then also imply that I(X) = I(V (I)) = I since I is radical, and hence
k[X] = An/I(X) = An/I ∼= A.

For each x ∈ kn, there is a corresponding evaluation morphism ex ∈
homk-alg(An, k). Then x ∈ X = imϕ if and only if there is some α ∈ Y such
that ex = α ◦ ϕ∗. This happens precisely when ex vanishes on the kernel
of ϕ∗, i.e., when ex(I) = 0, or equivalently, when x ∈ V (I). □

The previous discussion reveals a beautiful duality between finitely gen-
erated reduced k-algebras on the one hand, and affine varieties on the other
hand. Notice that we have not yet defined the notion of a morphism between
affine varieties. It is possible to do this directly in terms of the explicit co-
ordinatization of the affine varieties, but it is nicer to use duality to get an
intrinsic definition. In fact, it is also convenient to have a coordinate-free
definition of affine varieties at hand.

Definition 4.2.4. (i) An (abstract) affine k-variety is a pair (X,A), where
X is a set, and A is a ring of k-valued functions on X, such that A is
a finitely generated k-algebra, and such that the map

X → homk-alg(A, k) : x 7→ ex

(where ex is the evaluation morphism at x, as defined previously) is a
bijection. We often denote an abstract affine k-variety (X,A) simply by
X, and we refer to A as its ring of regular functions, or its coordinate
algebra, and denote it as A = k[X] or A = O[X] as before. Note that
Propositions 4.2.2 and 4.2.3 show precisely that every affine k-variety
is also an abstract affine k-variety, and conversely. The advantage of
abstract affine k-varieties is that the definition does not refer to an
embedding in some kn. Observe that the algebra A is automatically
reduced since it is an algebra of k-valued functions.

(ii) In particular, if A is a finitely generated reduced k-algebra, we can con-
sider the set X = homk-alg(A, k) —or more precisely, the pair (X,A)—
as the abstract affine variety corresponding to A. Explicitly, if f ∈ A,
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then f is a k-valued function on X, defined by the funny looking equal-
ity

f(x) := x(f) for all x ∈ X.
We could think of this as a “pairing” between X and A without favoring
one of the two objects as acting on the other.

(iii) Let X and Y be two (abstract) affine k-varieties. A morphism from X
to Y is a (set-theoretic) map f from X to Y such that the corresponding
dual map

f ∗ : homSet(Y, k)→ homSet(X, k) : α 7→ α ◦ f

induces a morphism from k[Y ] to k[X], which we also denote by f ∗.

Proposition 4.2.5. The abstract affine k-varieties, with morphisms as de-
fined above, form a category, which is dual to the category of finitely generated
reduced k-algebras.

Proof. Let C be the category of abstract affine varieties over k and D be
the category of finitely generated reduced k-algebras. In order to show that
C and D are dual to each other, we will use Lemma 3.2.8. So let F be
the contravariant functor from C to D, mapping each affine variety X to its
coordinate algebra k[X], and each morphism f : X → Y to the corresponding
morphism f ∗ : k[Y ]→ k[X]. We claim that F is a duality, i.e., that it is fully
faithful and dense.

To show that it is fully faithful, let X and Y be two abstract affine
varieties and consider

FX→Y : homC(X,Y )→ homD(k[Y ], k[X]) : f 7→ f ∗.

We have to show that for each algebra morphism g : k[Y ]→ k[X], there is a
unique map f : X → Y such that g = f ∗. Since X ' homk-alg(k[X], k) and
Y ' homk-alg(k[Y ], k) (by definition of abstract affine varieties), it is now
easy to check that the unique f we are looking for is precisely the map

f : homk-alg(k[X], k)→ homk-alg(k[Y ], k) : ϕ 7→ ϕ ◦ g.

Finally, the fact that F is dense is just a reformulation of the fact that each
finitely generated reduced k-algebra arises as the coordinate algebra of some
abstract affine variety; see Definition 4.2.4(ii). □

To finish this section, we introduce the important notion of dimension of
a variety, and we mention some facts without proofs.
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Definition 4.2.6. Let k be an algebraically closed field and let V be an
affine k-variety.

(i) When V is irreducible, its coordinate algebra k[V ] is a domain, so we
can consider its fraction field k(V ) := Frac(k[V ]). The dimension of V ,
dim(V ), is defined to be the transcendence degree of k(V ) over k (i.e.,
the largest possible size of an algebraically independent subset of k(V )
over k).

(ii) In general, write V as a finite union V =
⋃
Vi of its irreducible compo-

nents. Then we define dim(V ) = max dim(Vi).
Theorem 4.2.7. Let V be an irreducible subvariety of An and let f ∈ An =
k[t1, . . . , tn]. Let W = V ∩ V (f). Then either W = V , or W = ∅, or W is a
hypersurface of V , which means that every irreducible component of W has
dimension dimV − 1.
Theorem 4.2.8 (Topological characterization of dimension). Suppose V is
irreducible and that

V ⊃ V1 ⊃ · · · ⊃ Vd 6= ∅
is a maximal chain of distinct closed irreducible subsets of V . (Maximal
means that the chain cannot be refined.) Then dim(V ) = d.

4.3 Affine varieties as functors
Let k be an arbitrary field; we will drop our earlier restriction on k to be
algebraically closed. As we have observed, in this case the geometry does
not carry enough information, due to the failure of Hilbert’s Nullstellensatz
(think for example about the imaginary circle x2+y2+1 = 0 over R). Simply
extending our base field to its algebraic closure is not the right solution,
since we would then lose the specific nature of our objects over the original
base field. We would like to understand our objects over all field extensions
simultaneously, and that is where functors come into play. In fact, we will at
once allow extensions over all k-algebras, not just fields; it will soon become
clear why we do this.
Definition 4.3.1. Let k be an arbitrary field, let I ⊴An = k[t1, . . . , tn], and
let A = An/I. For any R ∈ k-alg, we let

VR(I) := {x ∈ Rn | f(x) = 0 for all f ∈ I},
and we call this the set of R-points of A. Observe that we can identify
the set VR(I) with homk-alg(A,R), in exactly the same fashion as we did in
Proposition 4.2.2(ii).
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We are now ready to introduce the notion of affine k-functors.

Definition 4.3.2. (i) A k-functor F is a functor from the category k-alg
to the category Set.

(ii) Recall from Definition 3.3.1(i) that for each A ∈ k-alg, there is a cor-
responding functor

hA : k-alg→ Set : R⇝ homk-alg(A,R).

A k-functor F is an affine k-functor if there exists a finitely generated
k-algebra A such that F ∼= hA; recall that A is unique up to isomor-
phism by the Yoneda Lemma (see Corollary 3.3.4). We also say that F
is represented by A, and we call A the coordinate ring or the coordinate
algebra of the affine k-functor F . We denote it by A = k[F ].

(iii) Let F and G be two affine k-functors. A morphism ϕ : F → G is
defined to be a natural transformation from F to G. By the Yoneda
Lemma, each such morphism ϕ corresponds to a unique algebra mor-
phism ϕ∗ : k[G]→ k[F ].

Example 4.3.3. (i) Consider the k-functor

An : k-alg→ Set : R⇝ Rn.

Then An is an affine k-functor represented by An = k[t1, . . . , tn] since

Rn ∼= homk-alg(An, R)

for all R ∈ k-alg.
(ii) Let I ⊴ An, and consider the k-functor

V : k-alg→ Set : R⇝ VR(I).

Then V is an affine k-functor represented by A = An/I, precisely be-
cause of the observation we made in Definition 4.3.1. The functor V is
sometimes called the functor of points corresponding to I.

Definition 4.3.4. Let F be an affine k-functor with coordinate algebra A =
k[F ], and let K/k be a field extension. Then we obtain a K-functor FK (also
denoted by F ×kK) simply by restricting the functor F to K-algebras (since
every K-algebra is of course also a k-algebra). Notice that

homk-alg(A,R) ' homK-alg(AK , R)
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for all R ∈ K-alg, where AK = k[F ] ⊗k K (see Example 2.2.10(4)). This
implies that FK is again an affine functor, with coordinate algebra

K[FK ] = k[F ]⊗k K = AK .

This procedure is called base change or extension of scalars.

Remark 4.3.5. Note that the coordinate algebras are no longer assumed
to be reduced, i.e. they may have non-zero nilpotents. This might sound
awkward from a classical point of view, but it is actually very convenient.
For instance, it might very well happen that a k-algebra A is reduced, but
becomes non-reduced after base change (e.g. if A is a purely inseparable field
extension of k, then A⊗k k will have non-zero nilpotents).

By Yoneda’s Lemma (Theorem 3.3.2), or more precisely its Corollary 3.3.4,
the map A ⇝ hA is a fully faithful contravariant functor from k-alg to
k-func, the category of k-functors. In other words, the category of affine
k-functors is anti-equivalent (i.e. dual) to the category of finitely generated
k-algebras. In particular, we do not lose any information by replacing a
k-algebra A by its associated k-functor hA.

We should think of the k-functors as geometric objects: just as the affine
k-varieties form a category which is dual to the category of finitely generated
reduced k-algebras when k is algebraically closed, so do the affine k-functors
form a category which is dual to the category of finitely generated k-algebras
(not necessarily reduced!) when k is arbitrary. The fact that the affine
k-functors hA contain enough information to recover A solves our earlier
issue that the set of k-points Vk(I) alone is not rich enough.

In addition, we have gained more: we do not only have affine k-functors
at our disposal, but the whole category of k-functors. This brings us into the
realm of affine schemes, even though we will not formally develop the theory
of schemes here.

We end this section with the construction of products.

Definition 4.3.6. Let F and G be two k-functors. Then the product of F
and G is the functor

F ×G : k-alg→ Set : R⇝ F (R)×G(R).

The product of two affine k-functors is again affine:

Proposition 4.3.7. Let F and G be two affine k-functors, represented by the
k-algebras A and B, respectively. Then F ×G is again an affine k-functor,
with coordinate algebra A⊗k B.
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Proof. For each k-algebra R, we have

F (R)×G(R) ∼= homk-alg(A,R)× homk-alg(B,R) ∼= homk-alg(A⊗k B,R),

where the last bijection is given by mapping a pair (f, g) ∈ homk-alg(A,R)×
homk-alg(B,R) to f ⊗ g; see Definition 2.2.7. (In a categorical setting, this
is precisely the statement that the tensor product is the coproduct in the
category k-alg.) □
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r 5 Linear algebraic groups

We are now ready to introduce the main objects of this course. We will
continue to adopt the functorial approach that we have started in the last
section 4.3, and introduce affine algebraic groups as certain functors. We will
see in section 5.4 that every affine algebraic group is linear, and in fact, it is
much more common to refer to our objects as linear algebraic groups instead.

5.1 Affine algebraic groups
Definition 5.1.1. (i) A k-group functor G is a functor G from the cat-

egory k-alg to the category Grp. Every k-group functor G has an
associated k-functor GSet obtained by the composition

k-alg G−−→ Grp
forget−−−→ Set.

(ii) An affine algebraic group is a k-group functor G such that the corre-
sponding k-functor GSet is affine.

(iii) If G is an affine algebraic group, then GSet is represented by a unique
finitely generated k-algebra A, which we call the coordinate ring or
coordinate algebra of G, and which we denote by k[G] or by O[G].

(iv) If G and H are two affine algebraic groups over k, then a morphism
ϕ : G → H is defined to be a natural transformation from the functor
G to the functor H.

Our main goal in this section is to understand the additional structure on
k[G] which is imposed by the fact that the k-functor arises from a k-group
functor.

Before we proceed, we will give some examples. Recall that, in order to
describe the functors, we will usually only describe what happens with the ob-
jects and omit the description of the corresponding map between morphisms
(see Remark 3.2.3).
Examples 5.1.2. (1) Define Ga as the functor

k-alg→ Grp : R⇝ (R,+).
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Then for each R ∈ k-alg, we can identify Ga(R) with homk-alg(k[t], R),
and hence

k[Ga] ∼= k[t],

the ring of polynomials over k in one variable. The affine algebraic group
Ga is called the additive (algebraic) group over k.

(2) Let n be a positive integer, and define SLn as the functor

k-alg→ Grp : R⇝ SLn(R).

Then SLn is an affine algebraic group with

k[SLn] ∼= k[t11, . . . , tnn] / (det(tij)− 1).

(3) Let n be a positive integer, and define GLn as the functor

k-alg→ Grp : R⇝ GLn(R).

Then by Rabinowitch’s trick (see page 2), GLn is an affine algebraic group
with

k[GLn] ∼= k[t11, . . . , tnn, d] / (d · det(tij)− 1).

(4) The functor GL1 is also written as Gm, and called the multiplicative
(algebraic) group over k. In this case,

Gm : k-alg→ Grp : R⇝ (R×, ·),

and
k[Gm] ∼= k[t, d]/(dt− 1) ∼= k[t, t−1],

the ring of Laurent polynomials over k.
(5) The functor SL1 maps every k-algebra R to the trivial group, and is

called the trivial algebraic group over k. In this case,

k[1] ∼= k[t]/(t− 1) ∼= k.

(6) Let n be a positive integer, and define µn as the functor

µn : k-alg→ Grp : R⇝ {r ∈ R | rn = 1}.

Then µn is an affine algebraic group with

k[µn] ∼= k[t]/(tn − 1).

It is called the algebraic group of n-th roots of unity over k, and is also
referred to as a multiplicative torsion group. Note that k[µn] has nilpotent
elements if char(k) = p | n.
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(7) Let p be a prime number, and let k be a field with char(k) = p. We
define the functor αp by

αp : k-alg→ Grp : R⇝
(
{r ∈ R | rp = 0},+

)
.

Then αp is an affine algebraic group with

k[αp] ∼= k[t]/(tp).

Note that k[αp] is never reduced.

The coordinate algebra k[G], as a k-algebra, only describes the geometry
of the k-functor G, not its group structure. We will now try to understand
how the group structure imposes additional structure on k[G].

Definition 5.1.3. Let G be a k-group functor. The multiplication, the
inverse and the neutral element for each of the objects G(R) defines natural
transformations

µ : G×G→ G,

ι : G→ G,

e : 1→ G.

By the Yoneda Lemma (see Corollary 3.3.4), we have corresponding k-algebra
morphisms

∆: k[G]→ k[G]⊗k k[G],

S : k[G]→ k[G],

ε : k[G]→ k.

They are called the comultiplication, the antipode and the counit, respectively.

Before we will figure out which axioms these morphisms satisfy in general,
we will try to get some feeling for these morphisms by some explicit examples.

Example 5.1.4. (1) Consider the additive algebraic group G = Ga : R 7→
(R,+), and recall that k[Ga] ∼= k[t]. Explicitly, for each R ∈ k-alg, there
is a bijection

β : homk-alg(k[t], R)→ (R,+): α 7→ α(t).

Similary, for Ga ×Ga, we have

k[Ga ×Ga] ∼= k[t]⊗k k[t] ∼= k[t1, t2],
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and there is a bijection

γ : homk-alg
(
k[t1, t2], R

)
→ (R×R,+): α 7→

(
α(t1), α(t2)

)
.

The natural transformation µ : Ga × Ga → Ga induces, for each R, a
morphism

µR : homk-alg
(
k[t1, t2], R

)
→ homk-alg(k[t], R)

which should correspond, under the above bijections β and γ, to the
addition map from R × R to R. We express this in a commutative
diagram:

homk-alg
(
k[t1, t2], R

)
homk-alg(k[t], R)

(R×R,+) (R,+)

µR

γ β

addition

α µR(α)

(
α(t1), α(t2)

)
α(t1) + α(t2) = µR(α)(t)

We conclude that

µR(α)(t) = α(t1) + α(t2) = α(t⊗ 1 + 1⊗ t)

for each R ∈ k-alg. By the Yoneda Lemma (Theorem 3.3.2), the comul-
tiplication ∆ is given by

∆ = µk[G]⊗k[G]

(
idk[G]⊗k[G]

)
,

and hence
∆(t) = t⊗ 1 + 1⊗ t.

Notice that this completely determines the k-algebra morphism ∆. In a
completely similar fashion, we get

S(t) = −t and ε(t) = 0.

(2) We now consider the multiplicative algebraic group Gm : R 7→ (R×, ·),
with k[Gm] = k[t, t−1]. In the same manner as in the previous example,
we get

µR(α)(t) = α(t1)α(t2) = α
(
(t⊗ 1)(1⊗ t)

)
= α(t⊗ t)
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for each k-algebra R, and hence

∆(t) = t⊗ t;

similarly,
S(t) = t−1 and ε(t) = 1.

(3) We finally consider the exampleG = GLn, with coordinate algebra k[G] =
k[tij, d]/(d · det(tij)− 1). We leave the details of the computation as an
exercise; the outcome is as follows:

∆(tij) =
∑n

ℓ=1 tiℓ ⊗ tℓj,
∆(d) = d⊗ d,

S(tij) = d · aji where aji is the cofactor of tji,
S(d) = det(tij),

ε(tij) = δij (the Kronecker delta),
ε(d) = 1.

We would now like to understand what conditions our k-morphisms ∆,
S and ε satisfy, and once again the Yoneda Lemma will give us the answer.
Let us first express the axioms of a group in terms of commutative diagrams
involving the natural transformations µ, ι and e.

Lemma 5.1.5. Let G be a k-functor. Then G = HSet for some k-group
functor H if and only if there are natural transformations

µ : G×G→ G,

ι : G→ G,

e : 1→ G,

such that the following diagrams commute:

G×G×G G×G

G×G G

id× µ

µ× id µ

µ
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G× 1 G×G

G G

id× e

∼= µ

1×G G×G

G G

e× id

∼= µ

G G×G

1 G

(id, ι)

µ

e

G G×G

1 G

(ι, id)

µ

e

Proof. It is clear that for each R ∈ k-alg, the commutativity of each of
the above diagrams translates into a similar commutative diagram for the
set G(R). The first diagram expresses the associativity of each µR, the
second and third diagram express the existence of a unit (namely eR(1))
for each G(R), and the fourth and fifth diagram express the existence of an
inverse map (namely ιR) in each G(R). □

Yoneda’s Lemma now immediately implies a similar statement for the
corresponding coordinate algebras.

Proposition 5.1.6. Let A be a finitely generated k-algebra, with multiplica-
tion map m : A ⊗ A → A. Then A is the coordinate algebra of some affine
algebraic k-group G if and only if there are k-algebra morphisms

∆: A→ A⊗ A,
S : A→ A,

ε : A→ k,

such that the following diagrams commute:

A A⊗ A

A⊗ A A⊗ A⊗ A

∆

∆ ∆⊗ id

id⊗∆
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A A⊗ A

A A⊗ k

∆

id⊗ ε
∼=

A A⊗ A

A k ⊗ A

∆

ε⊗ id

∼=

A k

A⊗ A A

ε

∆ η

m ◦ (id⊗ S)

A k

A⊗ A A

ε

∆ η

m ◦ (S ⊗ id)

Proof. This follows immediately from Lemma 5.1.5 and Corollary 3.3.4. One
subtle point is how to dualize the morphism (id, ι) : G→ G×G. Notice that
this morphism can be decomposed as

G
diag−−→ G×G id×ι−−→ G×G,

where diagR is the “diagonal map” G(R) → G(R) × G(R) : g 7→ (g, g).
It only remains to show that the dual of diag : G → G × G is precisely
m : A ⊗ A → A. This follows immediately from the Yoneda Lemma, since
diagA(idA) : A⊗ A→ A : a⊗ b 7→ idA(a)idA(b) = ab = m(a⊗ b). □
Definition 5.1.7. (i) A k-algebra A equipped with k-algebra morphisms

∆, S and ε satisfying the requirements from Proposition 5.1.6 is called
a (commutative) Hopf algebra1. Explicitly, we require the following
axioms to hold, where η : k → A is the structure morphism of the
k-algebra A, and where m : A⊗ A→ A is the multiplication map:

(id⊗∆) ◦∆ = (∆⊗ id) ◦∆,
m ◦ (id⊗ ε) ◦∆ = id = m ◦ (ε⊗ id) ◦∆,
m ◦ (id⊗ S) ◦∆ = η ◦ ε = m ◦ (S ⊗ id) ◦∆.

(ii) Let A,B be two Hopf k-algebras. A Hopf algebra morphism from A to
B is a k-algebra morphism f : A→ B compatible with the morphisms
∆, S and ε, i.e., such that

∆B ◦ f = (f ⊗ f) ◦∆A,

SB ◦ f = f ◦ SA,

εB ◦ f = εA.

1We will use the simple term Hopf algebra for a commutative Hopf algebra, but depend-
ing on the context, other authors might have the more general notion of not necessarily
commutative Hopf algebras in mind.
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In fact, it is sufficient to require f to be compatible with ∆; it then
follows that it is also compatible with S and with ε.

(iii) Let A,B be two Hopf k-algebras. The tensor product of A and B (as
Hopf algebras) is the Hopf algebra with underlying k-algebra equal to
A⊗kB as in Definition 2.2.9, and with ∆, S and ε defined in the obvious
way, i.e.,

∆A⊗B = (idA ⊗ τ ⊗ idB) ◦ (∆A ⊗∆B),

SA⊗B = SA ⊗ SB,

εA⊗B = mk ◦ (εA ⊗ εB).

It is straightforward to verify that this makes A ⊗k B into a Hopf
algebra.

Corollary 5.1.8. The category of affine algebraic k-groups is anti-equivalent
to the category of commutative finitely generated Hopf algebras over k.

In particular, there is a one-two-one correspondence between morphisms
ϕ : G→ H between two affine algebraic k-groups and morphisms ϕ∗ : k[H]→
k[G] between the corresponding Hopf algebras.

Proof. This follows immediately from Proposition 5.1.6. Recall that mor-
phisms between affine algebraic groups are defined as natural transformations
between functors, so the final statement follows from Corollary 3.3.4. □

Remark 5.1.9. Let G be an affine algebraic k-group and let R ∈ k-alg.

(i) In what follows, we will very often identify the group G(R) with the
set homk-alg(A,R) without explicitly writing the bijection β as in Ex-
ample 5.1.4(1).

(ii) Observe that under this identification, the unit element 1 ∈ G(k) cor-
responds precisely to the counit ε : A → k; more generally, the unit
element 1 ∈ G(R) corresponds to the composition ηR ◦ ε : A → R,
where ηR : k → R is the structure morphism of the k-algebra R.

Remark 5.1.10. Suppose that G and H are two affine algebraic k-groups,
with coordinate algebras k[G] and k[H], respectively. By Proposition 4.3.7,
the affine k-functor G×H has coordinate algebra k[G×H] ∼= k[G]⊗k k[H].
In fact, G × H is again an affine algebraic k-group, and the isomorphism
k[G×H] ∼= k[G]⊗k k[H] is an isomorphism of Hopf algebras. (We leave the
details of the verification of this fact to the reader.)

We will now use this duality between the two categories to construct the
so-called constant finite algebraic groups over k.
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Definition 5.1.11. An affine algebraic k-group G is called finite if its coor-
dinate algebra k[G] is finite-dimensional.

Example 5.1.12 (Constant finite algebraic groups). Let F be any finite
group. Our goal is to construct an affine algebraic k-group G such that
G(R) ∼= F “as often as possible”. Let

A := homSet(F, k)

with its natural k-algebra structure. Observe that as an algebra, we simply
have the structure of a direct product

A ∼=
∏
g∈F

k.

For each g ∈ F , let

eg : F → k :

{
g 7→ 1,

h 7→ 0 (h 6= g).

Then {eg | g ∈ F} forms a complete system of idempotents:

e2g = eg; egeh = 0 for all g 6= h;
∑
eg = 1.

We now make A into a Hopf algebra. We define k-algebra morphisms ∆, S
and ε by setting

∆(eg) :=
∑

a,b∈F | g=ab

ea ⊗ eb,

S(eg) := eg−1 ,

ε(eg) :=

{
1 if g = 1,

0 if g 6= 1,

for all g ∈ F . It is now an easy exercise to verify that these morphisms satisfy
the defining relations of a Hopf algebra. The associated affine algebraic group
Fk is now defined by

Fk(R) = hA(R) = homk-alg(A,R).

If R is a k-algebra without non-trivial idempotents, then every k-algebra
morphism from A to R necessarily maps exactly one element eg (g ∈ F ) to 1
and all others to 0; we conclude that in this case, Fk(R) ∼= F , at least as a set.
(Note, however, that if R does have non-trivial idempotents, then Fk(R) is
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always larger than F .) We verify that for such R, the group structure induced
by ∆, S and ε coincides with the original group structure of F . Since the
morphism ∆ is the dual of the natural transformation µ, the multiplication
µR is given by

µR : h
A⊗A(R)→ hA(R) : f 7→ f ◦∆.

The identification between F and hA(R) is given by the bijection

β : F → hA(R) : g 7→ βg :

{
eg 7→ 1,

eh 7→ 0 for all h 6= g.

Now assume that f ∈ hA⊗A(R) ∼= F × F is represented by (g1, g2) ∈ F × F ,
i.e. f = (βg1 , βg2) ∈ hA(R)× hA(R). We have to show that µR(f) = βg1g2 ; it
suffices to verify this for each generator eh, i.e. we have to check whether

(f ◦∆)(eh) = βg1g2(eh)

for all h ∈ F . We leave this as an easy exercise.
The affine algebraic groups Fk are called constant finite algebraic groups.

Remark 5.1.13. Observe that in general, the constant algebraic group Z/n
is different from the algebraic group µn. For instance, over Q, the groups Z/3
and µ3 are not isomorphic because they have different coordinate algebras (or
simply because Z/3(Q) has 3 elements whereas µ3(Q) has only 1 element).

However, when n is not a multiple of char(k) and k contains an n-th root
of unity, then Z/n ∼= µn (which is the case, for example, for k = C).

5.2 Closed subgroups
As for every algebraic structure, it will be invaluable to study substructures.
In our setting, this means that we are interested in subgroups of affine al-
gebraic groups that become affine algebraic groups in their own right. This
brings us to the notion of closed subgroups.

Definition 5.2.1. (i) Let C be a category, and let F be a functor from C
to Set. A functor G from C to Set is a subfunctor of F , if

• for every X ∈ ob(C), the set G(X) is a subset of F (X); and
• for every α ∈ homC(X,Y ), the morphism G(α) is the restriction

of F (α) to G(X).

(ii) Let C be a category, and let G be a functor from C to Grp. A functor
H from C to Grp is a subgroup of G, if
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• for every X ∈ ob(C), the group H(X) is a subgroup of G(X); and
• for every α ∈ homC(X,Y ), the morphism H(α) is the restriction

of G(α) to H(X).

(iii) If, moreover,

• H(X) is a normal subgroup of G(X) for all X ∈ ob(C),

then we call H a normal subgroup of G.
(iv) Let G be an affine algebraic k-group with coordinate algebra A = k[G].

A subgroup H of G is closed (or algebraic), if H is representable by a
quotient of A (as Hopf algebras).

Notice that a closed subgroup H of an affine algebraic group G is indeed
again an affine algebraic group, because k[H] is a quotient of the finitely
generated k-algebra A, and hence is itself finitely generated.

Remark 5.2.2. Let G be an affine algebraic k-group with coordinate algebra
A = k[G] and let H be a subgroup of G. If H is representable, then it is
automatically representable by a quotient of A (and hence H is a closed
subgroup); this follows from Corollary 5.3.3 below.

Conversely, we would like to know which ideals I of A give rise to a closed
subgroup of G. This brings us to the notion of a Hopf ideal.

Definition 5.2.3. Let A be a Hopf algebra over k, and let I be an ideal of
the k-algebra A. Then I is called a Hopf ideal of A, if

• ∆(I) ⊆ I ⊗ A+ A⊗ I;
• S(I) ⊆ I;
• ε(I) = 0.

The notion of a Hopf ideal plays the same role as the notion of an ideal
for rings with respect to homomorphisms:

Lemma 5.2.4. Let ϕ : A → B be a homomorphism of Hopf algebras. Then
ker(ϕ) is a Hopf ideal of A, and im(ϕ) is a Hopf subalgebra of B.

Conversely, every Hopf ideal I of A is the kernel of some homomorphism
ϕ : A → B of Hopf algebras, and the quotient A/I is again a Hopf algebra,
isomorphic to im(ϕ).

Proof. We leave the proof of these facts as an exercise. □
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The following correspondence between closed subgroups of G and Hopf
ideals of A is now immediate.

Corollary 5.2.5. Let G be an affine algebraic k-group with coordinate algebra
A = k[G]. The closed subgroups of G are in natural one-to-one correspon-
dence with the Hopf ideals of A.

Proof. This follows from Definition 5.2.1(iv) and Lemma 5.2.4. □

We give one more result for later use.

Proposition 5.2.6. Let G,H be two affine algebraic k-groups, with coordi-
nate algebras A = k[G] and B = k[H], and let ϕ : G → H be a morphism.
Then the kernel N = kerϕ is a normal closed subgroup of G with coordi-
nate algebra k[N ] = A/IH , where IH is the augmentation ideal of B, i.e.
IH is the kernel of the counit εH : B → k, and where IH := ϕ∗(IH)A is the
corresponding ideal in A.

Proof. Notice that N is defined to be the k-group functor

N : k-alg→ Grp : R 7→ ker
(
G(R)

φR−−→ H(R)
)
.

Then an element g ∈ G(R) = homk-alg(A,R) lies in N(R) if and only if
its composite with ϕ∗ : B → A factors through the counit εH : B → k (see
Remark 5.1.9(ii)). So let IH be the kernel of εH , and let IH := ϕ∗(IH)A⊴A be
the corresponding ideal in A. Then an element g ∈ G(R) = homk-alg(A,R)
lies in N(R) if and only if it is zero on ϕ∗(IH), and hence on IH . We conclude
that N(R) = homk-alg(A/IH , R) for all R ∈ k-alg. □

5.3 Homomorphisms and quotients
Recall that a homomorphism ϕ : G → H between affine algebraic groups is
uniquely determined by its dual homomorphism ϕ∗ : k[H] → k[G] between
Hopf algebras. Perhaps surprisingly2, the injectivity and surjectivity of ϕ
versus ϕ∗ are related in a rather subtle fashion.

Definition 5.3.1. Let ϕ : G → H be a morphism between two affine alge-
braic k-groups G and H, with dual morphism ϕ∗ : k[H]→ k[G].

2The reason is that injectivity and surjectivity cannot be expressed in terms of mor-
phisms in a category. The corresponding categorical notions are those of “monic” and
“epic” morphisms, which for the category Set indeed amount to injectivity and surjectiv-
ity, but which are genuinely different notions in many other categories.
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(i) The morphism ϕ is called injective if ϕR : G(R)→ H(R) is injective for
each R ∈ k-alg.

(ii) The morphism ϕ is called a quotient map if ϕ∗ is injective.

The following proposition is essential, but its proof requires more theory
than we have covered (fibered products and faithful flatness of algebras).

Proposition 5.3.2. A morphism ϕ : G→ H is an isomorphism if and only
if it is an injective quotient map.

Proof omitted. □

Corollary 5.3.3. A morphism ϕ : G→ H is injective if and only if the dual
morphism ϕ∗ : k[H]→ k[G] is surjective.

Proof. Assume first that ϕ∗ is surjective. Notice that for each R ∈ k-alg, the
map ϕR : G(R) = homk-alg(k[G], R) → H(R) = homk-alg(k[H], R) is simply
given by g 7→ g ◦ ϕ∗, which is indeed an injective map if ϕ∗ is surjective.

Conversely, assume that ϕ is injective and let A := imϕ∗, so that ϕ∗

decomposes as
ϕ∗ : k[H]↠ A ↪→ k[G].

Let G′ be the affine algebraic k-group corresponding to the Hopf algebra A;
then ϕ decomposes correspondingly as

ϕ : G→ G′ → H.

Since ϕ is injective, the same is true for the map G → G′. It now follows
from Proposition 5.3.2 that this map G → G′ is an isomorphism, and we
conclude that ϕ∗ is indeed surjective. □

Remark 5.3.4. Notice that we did not give a name to morphisms ϕ for
which each ϕR is surjective. As it turns out, this is not a very useful notion.
In particular, if ϕ is a quotient map, then it is not necessarily true that each
ϕR is surjective. (The converse is still true.) We give two typical examples.

(1) Let k = Q and let ϕ : Gm → Gm be the n-th power map, taking each
g ∈ Gm(R) to gn ∈ Gm(R). The dual morphism ϕ∗ : k[t, t−1]→ k[t, t−1]
maps t to tn; this map is clearly injective. However, the correspond-
ing map ϕQ : Gm(Q) → Gm(Q) is not surjective. (On the other hand,
ϕQ : Gm(Q)→ Gm(Q) is surjective.)

(2) Let ϕ : SLn → PGLn be the canonical projection. Then it can be checked
that ϕ∗ is injective. (We will do this in the exercises for n = 2.) On the
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other hand, ϕR is in general of course not surjective; the image of ϕR

is PSLn(R). In fact, PSLn is not an affine algebraic group — in other
words, the functor G : k-alg→ Grp : R 7→ PSLn(R) is not representable.
(Try to Google for “PSL is not an algebraic group” if you are interested
to know more.)

The observation about Q in the first example above is not a coincidence:

Proposition 5.3.5. Let G and H be affine algebraic k-groups and denote
the algebraic closure of k by k. Let ϕ : G→ H be a quotient map. Then the
map ϕk : G(k)→ H(k) is surjective.

Proof omitted. □
Remark 5.3.6. The converse of this proposition is not true in general, but
it is true whenever H is smooth; see section 8.5 below.

We will need the following proposition later; its proof again makes use of
fibered products.

Proposition 5.3.7. Let ϕ : G → H be a quotient map and let N be the
kernel of ϕ. Assume that ψ : G → H ′ is another homomorphism whose
kernel contains N . Then ψ factors uniquely through H, i.e., there is a
unique homomorphism ψ′ : H → H ′ such that ψ = ψ′ ◦ ϕ.

Proof omitted. □
Remark 5.3.8. When ϕ : G→ H is a quotient map with kernel N , then we
can assemble this information in a short exact sequence

1→ N → G→ H → 1.

In this case, we also denote H by G/N . We emphasize once again that this
does not imply that there are corresponding exact sequences

1→ N(R)→ G(R)→ H(R)→ 1

in general, and correspondingly, it is not true in general that (G/N)(R) ∼=
G(R)/N(R).

It is a highly non-trivial fact that quotients by closed normal subgroups
always exist:

Theorem 5.3.9. Let G be an affine algebraic k-group and let N be a closed
normal subgroup of G. Then there exists a quotient map ϕ : G → H with
kernel N ; in particular, H = G/N exists (and is unique up to isomorphism).

Proof omitted. □
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5.4 Affine algebraic groups are linear
So far, we have mainly been defining the objects we are interested in, but
in some sense, we have not yet proven any non-trivial theorems about affine
algebraic groups. In this section, we will use the theory we have built op so
far to show a crucial fact about affine algebraic groups, namely that they are
always linear in the sense that they can be embedded in a finite-dimensional
matrix group. The right context to study such embeddings is representation
theory, so we will first define the necessary relevant notions.

Definition 5.4.1. (i) Let G be an affine algebraic group over k, and let V
be a k-vector space. A representation of G is a natural transformation

ρ : G→ GLV ,

where GLV is the k-group functor defined as

GLV (R) := GL(R⊗k V ).

(We do not require V to be finite-dimensional, although that case will
eventually be of main interest.) Note that R ⊗k V is a free R-module,
and GL(R⊗k V ) denotes the group of automorphisms of this R-module.

(ii) Let A be a Hopf algebra over k. An A-comodule is a pair (V,m), where
V is a k-vector space, and where m : V → A ⊗k V is a k-linear map
such that3 (

idA ⊗m
)
◦m = (∆⊗ idV ) ◦m,

(ε⊗ idV ) ◦m = idV ,

i.e. such that the following two diagrams commute.

V A⊗ V

A⊗ V A⊗ A⊗ V

m

m id⊗m
∆⊗ id

V A⊗ V

V k ⊗ V

m

ε⊗ id

∼=

These two definitions are closely related:
3The reader should compare the defining commutative diagrams with those of a G-mod-

ule V .
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Proposition 5.4.2. Let G be an affine algebraic k-group, with coordinate
algebra A = k[G].

(i) Let ρ : G→ GLV be a G-representation, and let m be the restriction of
ρA(idA) ∈ GLV (A) = GL(A⊗k V ) to V . Then (V,m) is an A-comodule.

(ii) Conversely, let (V,m) be an A-comodule, and let ρ : G → GLV be the
natural representation given by

ρR(g) := (g ⊗ idV ) ◦m for all g ∈ G(R) = homk-alg(A,R). (5.1)

Then ρ is a G-representation.

Because of this equivalence, we will often say that a comodule (V,m) is
a G-representation.

Proof. Let EndV be the k-functor

EndV : k-alg→ Set : R⇝ End(R⊗k V ).

By the Yoneda Lemma, we have a natural bijection

Nat(GSet,EndV ) ' EndV (A) = End(A⊗k V ).

Since an element of End(A⊗k V ) is uniquely determined by its restriction to
a k-linear map m : V → A ⊗k V , this means that there is a one-to-one
correspondence between natural transformation of k-functors ρ (not tak-
ing into account that they arise from k-group functors!) and k-linear maps
m : V → A ⊗k V . Notice that the formula (5.1) is a direct consequence of
the Yoneda Lemma: by equation (3.1), we have ρR(g) = EndV (g)(m) for all
g ∈ G(R) = homk-alg(A,R).

It remains to show that ρ is a natural transformation of k-group functors
if and only if (V,m) is a comodule for A. In principle, this is a consequence
of the Yoneda Lemma by dualizing the axioms for a G-module, in the cat-
egory k-vec of k-vector spaces, identifying a vector space V inside its dual
homk-vec(V, k), but we will give an explicit argument instead.

To do this, we will first show that ρ preserves the identity if and only if
(ε ⊗ idV ) ◦ m = idV (which is the second defining identity for comodules).
Indeed, notice that ρ preserves the identity if and only if ρk preserves the
identity, which holds if and only if ρk(ε) = idV . We now simply observe that
ρk(ε) = (ε⊗ idV ) ◦m by equation (5.1).

We now show that ρ preserves the group multiplication if and only if(
idA ⊗ m

)
◦ m = (∆ ⊗ idV ) ◦ m (which is the first defining identity for
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comodules). Indeed, let R ∈ k-alg, and let g, h ∈ G(R). Then gh is, by
definition, given by the composition

A
∆−→ A⊗ A (g,h)−−→ R,

and hence ρR(gh) acts on V as

V
m−→ A⊗ V ∆⊗idV−−−−→ A⊗ A⊗ V (g,h)⊗idV−−−−−→ R⊗ V.

On the other hand, ρR(g)ρR(h) acts on V as4

V
m−→ A⊗ V g⊗idV−−−→ R⊗ V idR⊗m−−−−→ R⊗ A⊗ V (idR,h)⊗idV−−−−−−−→ R⊗ V,

or equivalently, as

V
m−→ A⊗ V idA⊗m−−−−→ A⊗ A⊗ V (g,h)⊗idV−−−−−→ R⊗ V.

We conclude that ρR(gh) = ρR(g)ρR(h) for all R ∈ k-alg and all g, h ∈ G(R),
if and only if

(
idA⊗m

)
◦m = (∆⊗ idV )◦m. (For the non-trivial implication,

choose R = A ⊗ A and let g, h be the natural inclusions as the first and
second component, respectively, so that (g, h) = idA⊗A.) □

An important example of a representation is given by k[G] itself.

Definition 5.4.3. Let G be an arbitrary affine algebraic k-group, with coor-
dinate algebra k[G] equipped with the comultiplication ∆. Then (k[G],∆) is
a comodule for k[G], and hence it induces a representation of G on k[G]. We
call this the regular representation of G. Note, however, that k[G] is almost
never finite-dimensional.

The regular representation is faithful, but this is not obvious at this
point. (This will follow from Theorem 5.4.6 below.) We will try to find
a finite-dimensional subrepresentation of the regular representation which is
still faithful.

Let us first formally define this notion:

Definition 5.4.4. Let G be an affine algebraic k-group, and let (V,m) be a
G-representation.

4Since we have defined our comodules as left comodules, we have to consider the dual
action on the right; in particular, the action of ρR(g)ρR(h) on V is given by first applying
ρR(g), and then ρR(h). Some authors prefer to use right comodules, in which case the
dual action is on the left.
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(i) A subrepresentation of (V,m) is a k-subspace5 W ≤ V such that
m(W ) ⊆ k[G]⊗k W .

(ii) The G-representation (V,m) is locally finite if every finite-dimensional
subspace W ≤ V is contained in some finite-dimensional subrepresen-
tation.

The following lemma gives a crucial ingredient for Theorem 5.4.6 that we
want to prove in a moment.
Lemma 5.4.5. Let G be an affine algebraic k-group. Then every G-repre-
sentation (V,m) is locally finite.

Proof. Let (V,m) be an arbitrary G-representation; it suffices to show that
every v ∈ V is contained in some finite-dimensional subrepresentation. Con-
sider a basis (ei)i∈I for the k-vector space k[G], and write

m(v) =
∑

i ei ⊗ vi,

where each vi ∈ V , and almost all vi are zero. On the other hand, we can
write

∆(ei) =
∑

j,ℓ rijℓ(ej ⊗ eℓ),
where each rijℓ ∈ k, and each of these sums is a finite sum. We now invoke
the fact that m is a comodule for k[G]:

V k[G]⊗ V

k[G]⊗ V k[G]⊗ k[G]⊗ V

m

m id⊗m
∆⊗ id

v
∑
ei ⊗ vi

∑
ei ⊗ vi

∑
∆(ei)⊗ vi =

∑
ei ⊗m(vi)

It follows that ∑
i,j,ℓ

rijℓ(ej ⊗ eℓ ⊗ vi) =
∑
j

ej ⊗m(vj),

and comparing the coefficients of ej yields∑
i,ℓ

rijℓ(eℓ ⊗ vi) = m(vj)

5We will sometimes say that V is a G-representation, and not mention m explicitly;
more formally, the subrepresentation corresponding to W is the pair (W,m|W ).
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for each j. We conclude that

W := 〈v, vi | i ∈ I〉

is a finite-dimensional subrepresentation of (V,m) containing v. □

We now come to the main theorem of this section.

Theorem 5.4.6. Let G be an affine algebraic group over k. Then there
exists a finite-dimensional vector space V over k and an injective morphism
ρ : G ↪→ GLV , so in particular G is a closed subgroup of GLV .

Proof. Recall that A = k[G] is a finitely generated k-algebra; let W be a
finite-dimensional k-vector space of A that generates A (as a k-algebra). By
Lemma 5.4.5, W is contained in some finite-dimensional subrepresentation
V of the regular representation (A,∆); of course V still generates A as a
k-algebra. Denote the corresponding natural transformation by

ρ : G→ GLV ;

it remains to show that ρ is injective, or equivalently, by Corollary 5.3.3, that

ρ∗ : k[GLV ]→ A

is surjective. (Notice that it will also follow then that G (or more precisely,
its isomorphic copy ρ(G)) is a closed subgroup of GLV because its coordinate
algebra will be a quotient of k[GLV ].)

Let {v1, . . . , vn} be a basis for V , and let

∆(vj) =
n∑

i=1

fij ⊗ vi,

with fij ∈ A. Then by equation (5.1), the natural transformation ρ is given
explicitly by

ρR(g)(vj) = (g ⊗ idV )(∆(vj)) =
n∑

i=1

g(fij)⊗ vi

for all g ∈ G(R) ' homk-alg(A,R) and all j ∈ {1, . . . , n}, and hence ρR(g) is
represented by the matrix

ρR(g) =
(
g(fij)

)
ij
∈ GLV (R).

It follows that
ρ∗(tij) = ρA(idA)(tij) = fij
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for all i, j, where tij is the (i, j)-th coordinate function, with k[GLV ] ∼=
k[t11, . . . , tnn, d]/(d · det(tij)− 1). On the other hand, it follows from Defini-
tion 5.1.7 that

vj = m(id⊗ ε)∆(vj) = m

(
n∑

i=1

fij ⊗ ε(vi)

)
=

n∑
i=1

ε(vi) · fij,

and hence vj ∈ im ρ∗, for all j. Since A is generated by the elements v1, . . . , vn
as a k-algebra, we conclude that ρ∗ is surjective. □

We have shown that every affine algebraic group is a linear algebraic
group, and hence we will use the common terminology “linear algebraic
group” from now on.

Example 5.4.7. Consider the algebraic group Ga over k, with coordinate
algebra A = k[t], and choose W = 〈t〉 as a generating k-subspace of A. Then
W is contained in the subrepresentation V = 〈1, t〉 of (A,∆), and

∆(1) := 1⊗ 1,

∆(t) := t⊗ 1 + 1⊗ t.

We can now immediately read off the corresponding matrix, which is

(
fij
)
=

(
1 t
0 1

)
,

and we recover the familiar representation for Ga (see Example 1.1.2(4)).

Remark 5.4.8. In general, the matrix group that we get by applying this
procedure has the opposite multiplication compared to the group G(R). See
also footnote 4 on page 61.
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Ch
ap

te
r 6 Jordan decomposition

Now that we have shown that every affine algebraic group is linear, we can
apply linear algebra to our study of linear algebraic groups. The Jordan
decomposition in linear algebraic groups will allow us to decompose the el-
ements in a semisimple and a unipotent part, and will have far-reaching
consequences. We begin with the study of this decomposition in the classical
setting, namely in the matrix group GL(V ); we will then see how to extend
our ideas to general linear algebraic groups.

6.1 Jordan decomposition in GL(V )

Definition 6.1.1. Let k be an arbitrary commutative field, let V be a finite-
dimensional vector space over k, and let g ∈ Endk(V ). Then:

1. g is diagonalizable if V has a basis of eigenvectors for g;
2. g is semisimple if V has a basis of eigenvectors for g over the algebraic

closure k, i.e. if g is diagonalizable over k;
3. g is nilpotent if gN = 0 for some integer N ;
4. g is unipotent if g − 1 is nilpotent.

We can now state the main theorem of this section. Recall that a commu-
tative field is called perfect if every irreducible polynomial over k has distinct
roots, or equivalently, if either char(k) = 0, or char(k) = p and every element
of k is a p-th power.

Theorem 6.1.2 (Jordan decomposition in GL(V )). Let k be a perfect com-
mutative field, let V be a finite-dimensional vector space over k, and let
g ∈ GL(V ). Then there exist unique elements gs, gu ∈ GL(V ) such that:

(a) gs is semisimple;
(b) gu is unipotent;
(c) g = gsgu = gugs.
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Moreover, both gs and gu can be expressed as polynomials in g without constant
term.

Proof. We will prove the theorem for algebraically closed fields k only; the
proof for general perfect fields k can either go along the same lines, or one
can alternatively reduce the general case to the case of algebraically closed
fields by some general arguments.

We will first show existence of the elements gs and gu. Choose a basis for
V such that g is in its Jordan normal form

g =



λ1 ∗
λ1 ∗

. . . ∗
λ1

. . .
λm ∗

λm ∗
. . . ∗

λm


,

where each ∗ is either 0 or 1, and where λ1, . . . , λm are the distinct eigenvalues
of g. Notice that each λi is non-zero since g is invertible. For each i ∈
{1, . . . ,m}, we let Vi be the generalized eigenspace corresponding to λi; the
decomposition V = V1⊕· · ·⊕Vm corresponds to the lines in the above matrix
for g. Let

gs :=



λ1
λ1

. . .
λ1

. . .
λm

λm
. . .

λm


,

and let gu := g−1
s g = gg−1

s . Then gs and gu satisfy the requirements (a)–(c).

We now show uniqueness. So assume that g = hshu = huhs, where hs
is semisimple and hu is unipotent. Let v be an arbitrary eigenvector for hs,
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with eigenvalue λ. Then

(g − λ)N(v) = (huhs − λ)N(v) = (huhs − λ)N−1(hu − 1)λv

= λ(hu − 1)(huhs − λ)N−1(v) = · · · = λN(hu − 1)N(v);

since hu is unipotent, it follows that (g − λ)N(v) = 0 for large enough N .
Hence v ∈ Vi for some i, and in particular λ = λi. It follows that the
decomposition of V into eigenspaces for the semisimple element hs coincides
with the decomposition V = V1 ⊕ · · · ⊕ Vm, with the same eigenvalues, and
hence hs = gs. This implies hu = gu, showing that the Jordan decomposition
of g is unique.

We finally show that gs and gu can be expressed as polynomials in g. Let
ni := dimVi. We apply the Chinese Remainder Theorem in k[x] to get a
polynomial P (x) such that

P (x) ≡ λi mod (x− λi)ni for all i ∈ {1, . . . ,m};
P (x) ≡ 0 mod x.

Then for each i ∈ {1, . . . ,m}, we have P (g)(v) = λiv for all v ∈ Vi, and
hence P (g) coincides with gs. The condition P (x) ≡ 0 mod x ensures that
P (g) is a polynomial in g without constant term. Finally, observe that g−1

s is
a polynomial in gs (consider its minimal polynomial), and hence gu = gg−1

s

is also a polynomial in g without constant term. □

Remark 6.1.3. The theorem does not hold when k is not perfect. For
instance, let k be a field with char(k) = 2 such that there is some a ∈ k \ k2.
Then

M =
(

0 1
a 0

)
=
(√

a 0

0
√
a

)(
0 1/

√
a√

a 0

)
,

so if M would have a Jordan decomposition over k, then it would have
at least two different Jordan decompositions over the algebraic closure k,
contradicting the uniqueness.

Jordan decompositions behave well with respect to linear transformations.

Corollary 6.1.4. (i) Let V,W be finite-dimensional vector spaces over
some perfect field k, and let ϕ : V → W be a linear transformation.
Assume that g ∈ GL(V ) and h ∈ GL(W ) are such that ϕ ◦ g = h ◦ ϕ.
Then

ϕ ◦ gs = hs ◦ ϕ and ϕ ◦ gu = hu ◦ ϕ.
(ii) If U ≤ V is a g-invariant subspace, then it is also gs- and gu-invariant,

and we have (g|U)s = (gs)|U and (g|U)u = (gu)|U .
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Proof. Statement (i) follows from the fact that ϕmaps generalized eigenspaces
to generalized eigenspaces: if (g − λ)N(v) = 0, then also

(h− λ)N
(
ϕ(v)

)
= ϕ

(
(g − λ)N(v)

)
= 0.

It follows that ϕ ◦ gs and hs ◦ϕ are identical on each generalized eigenspace,
and hence on all of V . The same then holds for the unipotent part.

To prove (ii), consider the inclusion map ϕ : U → V , and apply (i). □

Although we are eventually interested in linear algebraic groups, which
we know can be embedded in finite-dimensional matrix groups, we will have
to consider the more general case of infinite-dimensional vector spaces first.

Definition 6.1.5. Let k be an arbitrary field, and let V be an arbitrary
k-vector space, possibly infinite-dimensional. Let g ∈ Endk(V ). Then:

(i) g is diagonalizable if V has a basis of eigenvectors for g;
(ii) g is semisimple if g is diagonalizable over k;
(iii) g is nilpotent if for each v ∈ V , there is some positive integer N such

that gN(v) = 0;
(iv) g is unipotent if g − 1 is nilpotent;
(v) g is locally finite if for each v ∈ V , the subspace 〈gn(v) | n ∈ Z≥0〉 is

finite-dimensional.

Notice that unipotent elements and semisimple elements are locally finite.

Example 6.1.6. Let V = k[t], and consider the linear transformation D =
d
dt

, formal derivation in the variable t. Then D is locally finite and nilpotent.
On the other hand, there is no positive integer N such that DN = 0.

Remark 6.1.7. Assume that g ∈ GL(V ) is locally finite and let Lv :=
〈gn(v) | n ∈ Z≥0〉 for each v ∈ V . By definition, each Lv is finite-dimensional
and is stabilized by g. Now observe that also g−1 stabilizes each subspace Lv.
Indeed, g(Lv) ≤ Lv, but since g is invertible, g(Lv) and Lv have the same
(finite!) dimension, hence g(Lv) = Lv, and applying g−1 on this equality
gives Lv = g−1(Lv) as claimed.

The following proposition shows that Jordan decomposition continues to
hold for locally finite automorphisms.

Proposition 6.1.8. Let k be a perfect field, and let V be an arbitrary k-vector
space, possibly infinite-dimensional. Let g ∈ GL(V ) be locally finite. Then
there exist unique elements gs, gu ∈ GL(V ) such that:

68



(a) gs is semisimple;
(b) gu is unipotent;
(c) g = gsgu = gugs.

Moreover, every g-invariant subspace of V is also gs- and gu-invariant.

Proof. For every v ∈ V , we let

Lv := 〈gn(v) | n ∈ Z≥0〉.

Then each Lv is finite-dimensional, and g ∈ GL(V ) implies that the restriction
g|Lv belongs to GL(Lv) (see Remark 6.1.7). Hence we can apply Jordan
decomposition to each Lv to obtain

g|Lv = (g|Lv)s · (g|Lv)u ;

this allows us to define

gs(v) := (g|Lv)s(v) and gu(v) := (g|Lv)u(v)

for each v ∈ V . Linearity of gs and gu follows by restricting to the finite-
dimensional g-invariant subspaces containing the relevant1 elements of V ,
together with Corollary 6.1.4(ii).

It is clear that gu is unipotent, because this is a local property. On
the other hand, it is somewhat more subtle to see that gs is semisimple;
this follows from the fact that V is a direct limit of its g-invariant finite-
dimensional subspaces. □

6.2 Jordan decomposition in linear algebraic
groups

We now assume that G is a linear algebraic k-group. Our goal is to show that
every element of G(k) admits a (canonical) Jordan decomposition when k is
perfect. To obtain this goal, we will first study the regular representation for
G, and afterwards we will move on to the finite-dimensional representations,
which we are interested in.

1For instance, if we want to show gs(v + w) = gs(v) + gs(w), then we consider the
smallest g-invariant subspace containing v, w and v + w, which is the finite-dimensional
subspace 〈Lv, Lw, Lv+w〉, and we apply Jordan decomposition for the restriction of g to
that subspace, together with Corollary 6.1.4(ii).
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Lemma 6.2.1. Let G be a linear algebraic k-group with coordinate algebra
A = k[G], and consider its regular G-representation (A,∆), with correspond-
ing action

ρ = ρk : G(k)→ GLA(k) = GL(A)

given by equation (5.1). Then for every g ∈ G(k), the automorphism ρ(g) is
locally finite.

Proof. Let v ∈ A be arbitrary. By Lemma 5.4.5, the representation (A,∆) is
locally finite in the sense of Definition 5.4.4(ii), and hence v is contained in
some finite-dimensional subrepresentationW ≤ A; this means that ρ(g)(w) ∈
W for all g ∈ G(k) and all w ∈ W . In particular, 〈ρ(g)n(v) | n ∈ Z≥0〉 is
contained in W , for all g ∈ G(k). □

This allows us to transfer our earlier definitions to the context of linear
algebraic groups:
Definition 6.2.2. Let G be a linear algebraic group defined over k, and
consider its regular G-representation (k[G],∆), with corresponding action
ρ : G(k)→ GL(k[G]). Let g ∈ G(k).

(i) We call g semisimple if ρ(g) is semisimple.
(ii) We call g unipotent if ρ(g) is unipotent.
(iii) If g = gsgu = gugs with gs semisimple and gu unipotent, then we call

the pair (gs, gu) the Jordan decomposition of g.
Remark 6.2.3. (i) If g has a Jordan decomposition, then it is necessarily

unique because of Proposition 6.1.8; recall that ρ is injective because
the regular representation is faithful.

(ii) Every ρ(g) has a Jordan decomposition in GL(k[G]), but it is not ob-
vious at all that the corresponding elements ρ(g)s and ρ(g)u arise from
elements of G(k), i.e. whether they are contained in the image of ρ.

In order to proceed, we first need a connection between semisimple and
unipotent elements of GL(V ) on the one hand, and of GL(k[GLV ]) on the
other hand. We will only sketch the proof of this result since it is rather
specific and has some technical details that we will not need again.
Lemma 6.2.4. Let V be a finite-dimensional vector space over k, and let
G be the linear algebraic group G = GLV . Let g ∈ G(k) = GL(V ). Then
g is semisimple (unipotent) if and only if ρ(g) ∈ GL(k[G]) is semisimple
(unipotent).

In particular, if g ∈ G(k) has a Jordan decomposition (gs, gu), then
ρ(g)s = ρ(gs) and ρ(g)u = ρ(gu).
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Sketch of proof. The proof proceeds in three steps:

(1) ρ(g) is semisimple (unipotent) on k[GLV ] if and only if ρ(g) is semisimple
(unipotent) on k[End(V )];

(2) k[End(V )] ∼= k[x11, . . . , xnn] ∼= Sym(End(V )∗), where

Sym(Z) :=
∞⊕

m=0

Z⊗m/〈x⊗ y − y ⊗ x | x, y ∈ Z〉.

Then ρ(g) is semisimple (unipotent) on k[End(V )] if and only if ρ(g) is
semisimple (unipotent) on End(V )∗;

(3) ρ(g) is semisimple (unipotent) on End(V )∗ if and only if g is semisimple
(unipotent) on V .

We refer, for instance, to [Sza12] for more details. □

We are now ready to state the Jordan decomposition for linear algebraic
groups.

Theorem 6.2.5 (Jordan decomposition in linear algebraic groups). Let G be
a linear algebraic group defined over some perfect field k, and let g ∈ G(k).
Then g has a unique Jordan decomposition (gs, gu). Moreover, for every
embedding ϕ : G ↪→ GLn, we have ϕ(gs) = ϕ(g)s and ϕ(gu) = ϕ(g)u.

Proof. Choose an arbitrary embedding ϕ : G ↪→ GLV with dimk V <∞, and
let A = k[GLV ]. Consider the corresponding dual morphism

ϕ∗ : A→ k[G];

by Corollary 5.3.3, ϕ∗ is surjective. Let I = kerϕ∗. Notice that an element
h ∈ GLV (k) ' homk-alg(A, k) belongs toG(k) if and only if h(I) = 0. (Indeed,
G(k) ' homk-alg(A/I, k), and hence the embedding ϕk : G(k) ↪→ GLV (k) is
given explicitly by

ϕk : homk-alg(A/I, k)→ homk-alg(A, k) : f 7→ f ◦ ϕ∗.)

Next, we claim that for each h ∈ GLV (k), we have

h = ε ◦ ρ(h), (6.1)

where ρ = ρk : GLV (k)→ GL(A) is the regular representation of GLV on the
k-points given by equation (5.1) applied to the comodule (A,∆), and where
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ε : A→ k is the counit of the Hopf algebra A. Indeed,

ε ◦ ρ(h) = ε ◦m ◦ (h⊗ idA) ◦∆
= m ◦ (idk ⊗ ε) ◦ (h⊗ idA) ◦∆
= m ◦ (h⊗ idk) ◦ (idA ⊗ ε) ◦∆
= h ◦m ◦ (idA ⊗ ε) ◦∆
= h.

We now claim that
h(I) = 0 ⇐⇒ ρ(h)(I) ⊆ I. (6.2)

It is clear from (6.1) that if ρ(h)(I) ⊆ I, then h(I) = ε(ρ(h)(I)) ⊆ ε(I) = 0
because I is a Hopf ideal. Conversely, if h(I) = 0, i.e., if h ∈ G(k), then
the regular representations of GLV and of G are compatible for h, i.e. the
following diagram commutes:

ρ(ϕ(h)) : A A⊗ A k ⊗ A A

ρ(h) : A/I A/I ⊗ A/I k ⊗ A/I A/I

∆

ϕ∗

ϕ(h)⊗ idA

ϕ∗ ⊗ ϕ∗

∼=

id⊗ ϕ∗ ϕ∗

∆G h⊗ idA/I ∼=

(6.3)
Therefore, ρ(h)(I) ⊆ I. (Alternatively, this can be deduced from the fact
that ∆(I) ⊆ A⊗ I + I ⊗ A.) This proves the claim (6.2).

Notice that the commutative diagram (6.3) also shows that an element
g ∈ G(k) is semisimple or unipotent if and only if this holds for the corre-
sponding element ϕ(g) ∈ GLV (k).

Each element g ∈ GLV (k) has a Jordan decomposition (gs, gu), so we only
have to show that g ∈ G(k) implies gs, gu ∈ G(k) as well, or equivalently,
that

g(I) = 0 =⇒ gs(I) = gu(I) = 0. (6.4)

By Lemma 6.2.4, we have

ρ(g)s = ρ(gs) and ρ(g)u = ρ(gu).

If g(I) = 0, then by (6.2), the subspace I of A is ρ(g)-invariant. Because every
ρ(g)-invariant subspace is also ρ(g)s- and ρ(g)u-invariant (Corollary 6.1.4(ii)),
it follows that ρ(gs)(I) ⊆ I and ρ(gu)(I) ⊆ I. Again invoking (6.2), we
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conclude that gs(I) = gu(I) = 0 as claimed. Moreover, it follows from the
uniqueness of the Jordan decomposition that

ϕ(gs) = ϕ(g)s and ϕ(gu) = ϕ(g)u

for each embedding ϕ : G ↪→ GLV . □

The following important result is surprisingly delicate (although it is an
immediate corollary of Theorem 6.2.5 when ϕ is injective), so we omit its
proof.

Proposition 6.2.6. If ϕ : G→ H is a morphism of linear algebraic groups,
then ϕ maps semisimple elements to semisimple elements and unipotent el-
ements to unipotent elements. In particular, ϕ preserves the Jordan decom-
position of elements.

Proof omitted. □

We end this chapter by mentioning an important consequence of the
Jordan decomposition for commutative linear algebraic groups.

Definition 6.2.7. Let G be a linear algebraic group defined over some alge-
braically closed field k. Then we define

Gs := {g ∈ G(k) | g is semisimple};
Gu := {g ∈ G(k) | g is unipotent}.

Observe that Gu is always a closed subset of G, since after embedding it
into some GLn, it is determined by the polynomial equation (g−1)n = 0. On
the other hand, the set Gs is not a closed subset in general. For commutative
groups however, the situation is much nicer.

Theorem 6.2.8. Let G be a commutative linear algebraic group defined over
some algebraically closed field k. Then both Gs and Gu are closed subgroups
of G, and the product map

Gs ×Gu → G

is an isomorphism.

Proof omitted. □
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In this chapter, we will see how we can associate a Lie algebra to every
linear algebraic group; this algebra will arise as the tangent space of the
corresponding algebraic variety, equipped with additional structure arising
from the group structure of the linear algebraic group. We will soon see that
our general point of view, describing a linear algebraic group G as a functor
from k-alg to Grp, is also very convenient for this purpose: we will be using
the k[ε]-points of G, where k[ε] is the ring of dual numbers defined as k+ kε
with ε2 = 0.

The Lie algebra is a smaller object than the Hopf algebra, and frequently
is easier to analyze, but it can give substantial information about G, espe-
cially in characteristic zero.

At the end of this chapter, we will use the Lie algebra to introduce a
very important canonical representation for G, the so-called adjoint repre-
sentation. This representation will be crucial in Chapter 11 when we study
reductive groups.

7.1 Lie algebras
We begin by recalling what a Lie algebra is.

Definition 7.1.1. Let k be a commutative field. A Lie algebra over k is a
k-vector space g, together with a map

[·, ·] : g× g→ g,

such that:

(a) [·, ·] is k-bilinear;
(b) [x, x] = 0 for all x ∈ g;
(c) the Jacobi identity[

x, [y, z]
]
+
[
y, [z, x]

]
+
[
z, [x, y]

]
= 0

holds for all x, y, z ∈ g.
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The map [·, ·] is called the Lie bracket of g.

Observe that by property (b), the Lie bracket is skew symmetric, i.e. for
all x, y ∈ g, we have [x, y] = −[y, x].
Definition 7.1.2. Let g, g′ be Lie algebras.

(i) A Lie algebra morphism from g to g′ is a k-linear map α : g → g′

preserving the Lie bracket, i.e. such that α([x, y]) = [α(x), α(y)] for all
x, y ∈ g.

(ii) A Lie subalgebra of g is a k-subspace h ≤ g such that [x, y] ∈ h for all
x, y ∈ h, i.e. such that [h, h] ⊆ h.

(iii) An ideal of g is a k-subspace i ≤ g such that [g, i] ⊆ i. It is called a
proper ideal if it is not equal to g itself.

(iv) The dimension of g is simply defined to be the dimension of the under-
lying vector space.

Definition 7.1.3. Let A be an associative but not necessarily commutative
k-algebra. Then we can associate a Lie algebra a to A, by declaring a = A
as a k-vector space, and [x, y] = xy − yx for all x, y ∈ A. We will denote a
by Lie(A). It is straightforward to check that [x, x] = 0 for all x ∈ A and
that the Jacobi identity holds.
Example 7.1.4. Let A = Endk(V ) be the k-algebra of k-linear endomor-
phisms of a vector space V . Then we denote the corresponding Lie algebra
Lie(A) by glV . In particular, if dimk V = n < ∞, then A ∼= Matn(k),
and the corresponding Lie algebra will be denoted by gln. If we denote by
Eij ∈ Matn(k) the matrix with a 1 on the (i, j)-th position, and a 0 every-
where else, then the Lie bracket satisfies the rule

[Eij, Epq] = δpjEiq − δiqEpj

for all i, j, p, q.

We will need one more construction of Lie algebras, namely the Lie alge-
bra of derivations of a k-algebra.
Definition 7.1.5. Let A be a not necessarily commutative nor associative
k-algebra.

(i) A k-derivation (or simply derivation) on A is a k-linear map D : A→ A
such that the Leibniz rule

D(a · b) = D(a) · b+ a ·D(b)

holds, for all a, b ∈ A.
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(ii) We denote the set of all k-derivations on A by Derk(A) or by Der(A).
Notice that Der(A) is a k-subspace of Endk(A); as we will see in Propo-
sition 7.1.6 below, Der(A) is in fact a Lie subalgebra of glA.

Notice that the composition of two derivations is not necessarily a deriva-
tion again; we have

(D1 ◦D2)(a · b) = (D1 ◦D2)(a) · b+ a · (D1 ◦D2)(b)

+D1(a)D2(b) +D2(a)D1(b) (7.1)

for all D1, D2 ∈ Der(A) and all a, b ∈ A. However:

Proposition 7.1.6. Let A be a not necessarily commutative nor associative
k-algebra. Then Der(A) is a Lie subalgebra of glA.

Proof. It follows immediately from equation (7.1) that for all D1, D2 ∈
Der(A), the map [D1, D2] = D1 ◦ D2 − D2 ◦ D1 satisfies the Leibniz rule,
and hence belongs to Der(A) again. □

When A is itself a Lie algebra g, an important class of derivations are the
so-called inner derivations:

Definition 7.1.7. Let g be a Lie algebra. Then for each x ∈ g, we define

adg x : g→ g : y 7→ [x, y]

for all y ∈ g; we call this the inner derivation induced by x, or the adjoint
linear map of x.

Proposition 7.1.8. Let g be a Lie algebra. Then:

(i) For each x ∈ g, the inner derivation adg x is a derivation of g, where we
consider g as a k-algebra with multiplication given by the Lie bracket.

(ii) Let ad(g) := {adg x | x ∈ g}. Then ad(g) is an ideal of the Lie algebra
Der(g).

(iii) The map
adg : g→ Der(g) : x 7→ adg x

is a Lie algebra homomorphism.

Proof. (i) We have to check that for all x, y, z ∈ g, the identity

adg x
(
[y, z]

)
=
[
adg x(y), z

]
+
[
y, adg x(z)

]
holds. This identity is equivalent to the Jacobi identity.
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(ii) This follows from the fact that

[adg x,D] = adg(−Dx)

for all D ∈ Der(g) and all x ∈ g.
(iii) It follows from the Jacobi identity again that

adg[x, y](z) = (adg x)(adg y)(z)− (adg y)(adg x)(z)

for all x, y, z ∈ g. □

Definition 7.1.9. Let g be a Lie algebra. The kernel of the map adg is called
the center of g and denoted by Z(g); observe that

Z(g) = {x ∈ g | [x, g] = 0}.

7.2 The Lie algebra of a linear algebraic group
We will now explain how we can associate a Lie algebra to a linear algebraic
group G. We will first define the underlying vector space, and afterwards we
will make clear how to define the Lie bracket.

Definition 7.2.1. Let R be a commutative ring with 1. Then we define1

the ring of dual numbers over R to be

R[ε] := R[x]/(x2) = R⊕ εR

with ε2 = 0. We will denote the canonical projection on the first component
by π, i.e.

π : R[ε]→ R : a+ εb 7→ a;

note that π is a ring homomorphism.

Notice that an element a + εb ∈ R[ε] is invertible if and only if a is
invertible in R; in this case, the inverse is given by

(a+ εb)−1 = a−1 − εa−2b.

1Note the subtle difference in notation: we use ε for the dual numbers and ϵ for the
counit of the Hopf algebra. This should not cause too much confusion, since the former is
a ring element whereas the latter is a ring morphism.
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Definition 7.2.2. Let G be a linear algebraic k-group. For each R ∈ k-alg,
we define

LieR(G) := ker
(
G
(
R[ε]

) G(π)−−−→ G(R)
)
.

The Lie algebra of G is now defined as

Lie(G) := Liek(G) = ker
(
G
(
k[ε]
) G(π)−−−→ G(k)

)
.

Notice that this definition only gives Lie(G) the structure of a group; it is
not obvious that Lie(G) can be made into a k-vector space (it is not even
obvious that it is an abelian group).

We will first have a look at the mother of all linear algebraic groups, GLn.

Example 7.2.3. Consider the linear algebraic group G = GLn. Then2

G
(
k[ε]
)
= {A+ εB | A ∈ GLn(k), B ∈ Matn(k)};

the inverse of an element A+ εB ∈ G
(
k[ε]
)

is given by

(A+ εB)−1 = A−1 − εA−1BA−1.

Hence
Lie(G) = {In + εB | B ∈ Matn(k)},

and the map
E : Matn(k)→ Lie(G) : B 7→ In + εB

is a bijection; notice that E(A)E(B) = E(A+B). In particular, we see that
Lie(G) is indeed an abelian group. Observe that this law tells us that the
map E behaves, in some sense, as an exponential map.

It is now clear that it makes sense to make Lie(GLn) into a Lie algebra,
since Matn(k) has a natural Lie algebra structure, namely the Lie algebra
gln introduced in Example 7.1.4.

Since every linear algebraic group can be embedded into some GLn, we
can use this primary example to define the Lie algebra structure on Lie(G)
for any linear algebraic group G.

2Recall that for each R ∈ k-alg, the set of R-points G(R) is given as the set of solutions
of the polynomial equation d · det(tij)− 1 = 0 in Rn2+1. When R = k[ε], write each tij as
aij+εbij and d = r+εs, and expand to get the above description for G(k[ε]). Alternatively,
simply express that a matrix A+ εB ∈ Matn(R) is invertible.
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Definition 7.2.4. Let G be a linear algebraic k-group, and let Lie(G) be as
in Definition 7.2.2. Choose an arbitrary embedding G ↪→ GLn, and notice
that this induces an embedding of Lie(G) as a subgroup of Lie(GLn) = gln.
It turns out that Lie(G) is, in fact, a Lie subalgebra of Lie(GLn) = gln, and
that the Lie algebra Lie(G) is independent (up to isomorphism) of the chosen
embedding G ↪→ GLn.

It is a natural question whether it is possible to give a more intrinsic
definition of the Lie algebra Lie(G), which does not depend on an embedding
G ↪→ GLn. This is indeed possible. We state the result without proof.

Definition 7.2.5. Let G be a linear algebraic group defined over k, and let
A = k[G] be its coordinate algebra. Then a k-derivation D ∈ Derk(A) is
called left-invariant if

∆ ◦D = (id⊗D) ◦∆.
We will denote the space of left-invariant k-derivations on A by Derℓk(A).

The space of left-invariant k-derivations is a Lie subalgebra of Derk(A):

Lemma 7.2.6. Let G be a linear algebraic group defined over k, and let
A = k[G] be its coordinate algebra. Then Derℓk(A) is a Lie subalgebra of
Derk(A).

Proof. We have to check that when D1, D2 ∈ Derk(A) are left-invariant, then
so is [D1, D2] = D1 ◦D2 −D2 ◦D1. This is an easy exercise. □
Theorem 7.2.7. Let G be a linear algebraic group defined over k, and let
A = k[G] be its coordinate algebra. Then

Lie(G) ' Derℓk(A)

as Lie algebras.

Proof omitted. □

We will now give some more examples; we leave some of the details to
the reader.

Example 7.2.8. (1) Let G = SLn. Then

Lie(G) = {In + εA ∈ Matn(k[ε]) | det(In + εA) = 1}.

Since ε2 = 0, we have det(In + εA) = 1 + ε tr(A), and hence

Lie(SLn) = {In + εA | A ∈ Matn(k), tr(A) = 0}
= {E(A) | A ∈ Matn(k), tr(A) = 0}.
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We observe that Lie(SLn) is indeed a Lie subalgebra of gln, which we
denote by sln. In fact, we even have that the Lie bracket of any two
elements of gln belongs to sln, since for all A,B ∈ Matn(k), we have
tr(AB −BA) = 0.

(2) Let G = Tn be the linear algebraic group of invertible upper triangular
matrices. Then Lie(G) is isomorphic to the Lie subalgebra of (all) upper
triangular matrices

Lie(Tn) = {E(A) | A ∈ Matn(k), Aij = 0 for all i > j}.

(3) Let G = Un be the linear algebraic group of upper triangular matrices
with 1’s on the diagonal. Then Lie(G) is isomorphic to the Lie subalgebra

Lie(Un) = {E(A) | A ∈ Matn(k), Aij = 0 for all i ≥ j}.

(4) Let G = Dn be the linear algebraic group of invertible diagonal matrices.
Then Lie(G) is isomorphic to the Lie subalgebra of (all) diagonal matrices

Lie(Dn) = {E(A) | A ∈ Matn(k), Aij = 0 for all i 6= j}.

Remark 7.2.9. (i) A morphism of linear algebraic groups α : G → H
induces a morphism of Lie algebras Lie(α) : Lie(G) → Lie(H), which
is injective if the morphism G → H is a closed embedding, i.e. if α is
injective and α(G) is a closed subgroup of H.
The fact that we have a morphism of abelian groups from Lie(G) to
Lie(H) follows immediately from the definitions, and more precisely
from the commutative diagram

G
(
k[ε]
)

G(k)

H
(
k[ε]
)

H(k)

G(π)

αk[ε] αk

H(π)

but it requires more effort to show that this morphism Lie(α) preserves
the Lie brackets.

(ii) The Lie algebra construction is functorial. More precisely, the con-
struction described in (i) is the unique way of making Lie : G 7→ Lie(G)
into a functor (from linear algebraic k-groups to Lie k-algebras) such
that Lie(GLn) = gln.
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One important feature of the Lie algebra of an algebraic group is that it
provides a natural representation, known as the adjoint representation. To
define it, recall that

π : R[ε]→ R : a+ εb 7→ a,

and define
ι : R→ R[ε] : a 7→ a+ ε0;

then π ◦ ι = idR. These maps give rise to homomorphisms

G(R)
ι−−→ G(R[ε])

π−−→ G(R), π ◦ ι = idG(R),

where we have written π and ι instead of G(π) and G(ι) to simplify the
notation. Recall that

g(R) = ker
(
G
(
R[ε]

) π−−→ G(R)
)
.

It is a not completely trivial fact that

g(R) ∼= g(k)⊗k R;

this follows most easily from the description of g(R) in terms of derivations,
but we will omit the details. Now define

AdR : G(R)→ Aut(g(R)) : g 7→ AdR(g),

where
AdR(g) : g(R)→ g(R) : x 7→ ι(g) · x · ι(g)−1

for all g ∈ G(R). Notice that the map AdR(g) is in fact an R-linear map,
and hence AdR maps G(R) into GL(g(R)). Since all the constructions are
natural in R, this gives rise to a natural transformation

Ad: G→ GLg.

Definition 7.2.10. Let G be a linear algebraic k-group. The adjoint repre-
sentation of G is the representation Ad defined above.

As a useful example, we compute the adjoint representation for the group
G = GLn.
Example 7.2.11. Let k be a field and let G = GLn over k with Lie algebra
g = gln(k). Let Ad: G→ GLg be the adjoint representation of G. Then the
adjoint action of G = GLn on g is given by conjugation: Ad(A)(X) = AXA−1

for all A ∈ GLn(R) and all X ∈ g(R).
Indeed, the elements of g(R) are of the form I + εX for X ∈ Matn(R),

and by definition, the adjoint action of an element A ∈ GLn(R) is given by

I + εX 7→ ι(A) · (I + εX) · ι(A)−1 = I + εAXA−1.
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The adjoint representation can be used to give another (but equivalent)
definition of the Lie bracket on g = Lie(G):

Theorem 7.2.12. Let G be a linear algebraic k-group, with Lie algebra g,
and with adjoint representation Ad: G→ GLg. Let ad be the adjoint map of
the Lie algebra g as in Definition 7.1.7. Then Lie(Ad) = ad.

Proof. By Definition 7.2.4, it suffices to show this for G = GLn. The Lie
algebra g = gln comes equipped with the adjoint map

ad: g→ glg : A 7→ ad(A),

where ad(A) acts on g as X 7→ [A,X] = AX −XA.
On the other hand, if we apply the functor Lie to the homomorphism Ad,

we obtain a linear map

Lie(Ad): Lie(G)→ Lie(GLg) ∼= glg.

We already know from Example 7.2.11 that A ∈ GLn(R) acts on Matn(R)
by mapping each X to AXA−1, so when we apply the Lie functor, we obtain
that an element I + εA ∈ Lie(GLn(R)) acts on Matn(R[ε]) by mapping each
X + εY to

(I + εA)(X + εY )(I + εA)−1 = X + εY + ε(AX −XA).

In other words, Lie(Ad)(A) acts as id + ε ad(A), as required. □

Remark 7.2.13. The adjoint representation is not faithful in general. No-
tice, for instance, that Z(G) is always contained in the kernel of Ad. In fact,
when char(k) = 0 and G is connected, then Z(G) = ker(Ad), but in general,
this is not true. (If G is connected, then the quotient ker(Ad)/Z(G) is always
a unipotent group.)
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We will briefly study some of the topological aspects of linear algebraic
groups, and in particular we will study connectedness. This crucial property
will have a nice interpretation in terms of the Hopf algebra coordinatizing
the linear algebraic group. At the end of this chapter, we will also say a few
words about smoothness and the dimension of linear algebraic groups.

8.1 Connected components of matrix groups
Before we study connectedness for linear algebraic groups in general, it is
enlightening to have a look at the “classical” case of closed1 subgroups of
GLn(k), where k is an algebraically closed field. Recall from Corollary 4.1.16
that every affine variety is a finite union of its irreducible components (and
in particular it is also a finite union of its connected components, each of
which is a union of irreducible components).

Theorem 8.1.1. Let k be an algebraically closed field, let G be a closed
subgroup of GLn(k), and let G◦ be the connected component containing the
unit 1 ∈ G. Then G◦ is a normal subgroup of finite index in G. The
irreducible components of G coincide with the connected components; they are
precisely the cosets of G◦ in G, so in particular there are precisely [G : G◦]
components.

Proof. Let G = V1 ∪ · · · ∪ Vr be the decomposition of G into its irreducible
components. Then V1 is not contained in any Vj (2 ≤ j ≤ r), and since V1 is
irreducible, it is not contained in their union V2 ∪ · · · ∪Vr either; hence there
is some x ∈ V1 not contained in any other irreducible component. Since G
is a group, every left translation G → G : y 7→ gy (where g ∈ G is fixed)
is a homeomorphism, and hence every element of G is contained in exactly
one irreducible component. It follows that the irreducible components are
disjoint, and hence they coincide with the connected components.

1Of course, we are considering GLn(k) as an affine variety over k endowed with the
Zariski topology, as in Chapter 4.
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If x ∈ G◦, then the set xG◦ is homeomorphic to G◦ and hence a com-
ponent; since it contains x ∈ G◦, this implies that xG◦ = G◦, and therefore
G◦ is closed under multiplication. For similar reasons G◦ is closed under
inverses and is invariant under conjugation by any g ∈ G. Finally, since we
have already observed that each coset xG◦ is an irreducible component, we
have precisely [G : G◦] such components. □

8.2 The spectrum of a ring
Our next goal is to study connectedness for our more general notion of linear
algebraic groups as k-group functors. Such an object G is completely deter-
mined by its coordinate algebra k[G], and we would like to see how we can
detect connectedness in terms of this Hopf algebra.

But what does connectedness even mean for a k-functor? When k is alge-
braically closed, it makes sense to consider the group of k-points G(k), and
algebraically the k-points are in one-to-one correspondence with the maxi-
mal ideals (see Corollary 4.1.11). This is no longer true for general fields k,
and the collection of maximal ideals does not capture enough information in
general, certainly not when we consider the group of R-points G(R) for some
k-algebra R.

It turns out that considering all prime ideals instead is more satisfying,
and that is what we will do.

Definition 8.2.1. Let A be a commutative ring with 1. Then the spectrum
of A is defined as the collection of its prime ideals

SpecA := {I ⊴ A | I is prime}.

We make SpecA into a topological space by declaring a subset of SpecA to
be closed if it has the form

V (I) := {P ∈ SpecA | P ⊇ I}

for some ideal I⊴A. This topology2 is called the Zariski topology on SpecA.

To see the connection with the classical geometric objects, assume that
A = k[V ] for some affine variety V ⊆ kn over an algebraically closed field k.
Then every point of V corresponds to a maximal ideal of A and hence to an
element of SpecA; this embedding V ↪→ SpecA induces a homeomorphism

2It is not hard to check that V (I) ∪ V (J) = V (IJ) and
⋂
V (Iα) = V

(∑
Iα
)
, so this

does indeed define a topology.
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from V onto its image. Moreover, the image is dense: if a closed set V (I)
contains V , then I is contained in the intersection of all maximal ideals, and
since A is noetherian, this intersection coincides with the intersection of all
prime ideals (see also the proof of Corollary 8.2.5(iii) below); this implies
that indeed V (I) = SpecA. Recall that a topological space is irreducible if
and only if every non-empty open set is dense; it follows that V is irreducible
if and only if SpecA is irreducible. Also, if V is connected, then SpecA
is also connected; the converse is also true, but this is less obvious (see
Corollary 8.2.5 below).

It is easy to detect irreducibility of SpecA from the structure of A. Com-
pare this with Lemma 4.1.15.

Lemma 8.2.2. Let A be a commutative ring with 1, and let N be its nilrad-
ical, i.e. the set of nilpotent elements of A. Then:

(i) N is an ideal; it coincides with the intersection of all prime ideals of A;
(ii) SpecA is irreducible if and only if A/N is an integral domain;
(iii) if A is noetherian, then SpecA is the union of finitely many maximal

irreducible closed subsets, its irreducible components.

Proof. (i) Let a ∈ A be nilpotent, and P ⊴ A be prime. Then A/P is an
integral domain, hence the image of a in A/P is zero, and hence a ∈ P .
Therefore every nilpotent element is contained in the intersection of all
prime ideals.
Conversely, let a ∈ A be non-nilpotent, and let Aa = A[a−1] be the
localization of A at a. Take a maximal ideal I ⊴ Aa; its inverse image
in A is prime and does not contain a.

(ii) Assume first that SpecA = Y1 ∪ Y2 for some proper closed subsets Y1
and Y2. Then there exists an element a ∈

(
∩P∈Y1P

)
\N , and an element

b ∈
(
∩P∈Y2P

)
\N . Then each prime ideal P ∈ SpecA contains either a

or b (or both), and hence contains ab; so ab ∈ N . Since neither a ∈ N
nor b ∈ N , this shows that A/N is not an integral domain.
Conversely, if A/N contains zero divisors, then we can find a, b ∈ A
such that ab ∈ N but neither a ∈ N nor b ∈ N . Since ab ∈ N , we have
for each prime ideal P ⊴ A that either a ∈ P or b ∈ P , and it follows
that

SpecA = {P ∈ SpecA | a ∈ P} ∪ {P ∈ SpecA | b ∈ P}

decomposes SpecA as the union of two proper closed subspaces, hence
SpecA is reducible.
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(iii) Since A is noetherian, any non-empty collection of closed sets in SpecA
has a minimal element. We will show that all closed sets are finite
unions of irreducible closed subsets. Assume not; then by our previous
observation, we can take a minimal closed set Y which is not a finite
union of irreducible closed subsets. Then Y is certainly reducible, say
Y = Y1 ∪ Y2; by minimality, Y1 and Y2 would be finite unions of irre-
ducible closed subsets, but then the same would be true for Y itself,
which is a contradiction. Hence we can write every closed X as a finite
irredundant union X = X1 ∪ · · · ∪Xr of irreducible closed subsets, and
in particular this is true for SpecA itself. □

We now proceed to study connectedness of SpecA. An important role is
played by the idempotents in A.
Theorem 8.2.3. Let A be a commutative ring with 1. A closed set V (I) in
SpecA is clopen (i.e. closed and open) if and only if V (I) = V (e) for some
idempotent element e ∈ A. Moreover, if V (e) = V (f) for some idempotents
e, f ∈ A, then e = f .

Proof. Assume that e ∈ A is idempotent; then e + (1− e) = 1, so V (e) and
V (1− e) are disjoint closed sets. On the other hand, if P ⊴A is prime, then
0 = e(1 − e) ∈ P implies e ∈ p or 1 − e ∈ P , and hence V (1 − e) is the
complement of V (e), which implies that V (e) is clopen.

Assume that V (e) = V (f) for some idempotents e, f ∈ A. Then

V (f(1− e)) = V (f) ∪ V (1− e) = SpecA,

hence by Lemma 8.2.2(i), the element f(1−e) is nilpotent. However, f(1−e)
is also idempotent, and hence f(1−e) = 0, implying f = ef . Similary e = ef
and we conclude that e = f .

Assume finally that V (I) is clopen, and write its complement as V (J).
Then V (I + J) = V (I) ∩ V (J) = ∅ and hence I + J = A, which implies
that we can write 1 = a + b with a ∈ I and b ∈ J . On the other hand,
SpecA = V (I) ∪ V (J) = V (IJ), and hence ab is nilpotent, so we have
(ab)N = 0 for some N . Notice that a maximal ideal containing aN and bN

would contain a and b and hence a+b = 1, which is a contradiction; hence we
can write 1 = uaN +vbN for some u, v ∈ A. Observe that uaN is idempotent,
since

(uaN)2 = uaN · (1− vbN) = uaN − uv(ab)N = uaN .

On the other hand, we have

V (uaN) ⊇ V (I) and V (vbN) ⊇ V (J),

with V (uaN) disjoint from V (vbN); we conclude that V (I) = V (uaN). □
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Remark 8.2.4. Notice that if A is a ring with a non-trivial idempotent e,
then A decomposes as the product

A ∼= eA× (1− e)A,

where eA and (1−e)A are rings with unit e and 1−e, respectively. Conversely,
if A ∼= B × C for certain non-zero rings B and C, then A has non-trivial
idempotents e = (1, 0) and 1− e = (0, 1).

Corollary 8.2.5. Let A be a commutative ring with 1.

(i) SpecA is connected if and only if A has no non-trivial idempotents.
(ii) If A is noetherian, then it has only finitely many idempotents.
(iii) If k is algebraically closed, and A is a finitely generated k-algebra, then

SpecA is connected if and only if its subset

SpecMaxA := {I ⊴ A | I is a maximal ideal}

is connected.
(iv) If k is algebraically closed, and V is an affine k-variety, then V is

connected if and only if Spec k[V ] is connected.

Proof. (i) This follows immediately from Theorem 8.2.3.
(ii) If A is noetherian, then by Lemma 8.2.2(iii), Spec(A) has only finitely

many irreducible components. Since every connected component is a
union of irreducible components, this implies that Spec(A) has only
finitely many connected components, and the result now follows again
from Theorem 8.2.3.

(iii) The important point here is that Hilbert’s Nullstellensatz implies that
A is a Jacobson ring, i.e., every prime ideal is the intersection of the
maximal ideals containing it; in particular, the nilradical N is equal to
the intersection of all maximal ideals of A. The proof of Theorem 8.2.3
can now be adapted in order to get an idempotent element in A for
each clopen subset of SpecMaxA.

(iv) This follows from (iii) because V ∼= SpecMax k[V ] as topological spaces.
□

8.3 Separable algebras
We now have a good definition of connectedness using the spectrum of the
coordinate algebra, but there is still an important problem that remains:
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the number of connected components is not always invariant under base
extension, i.e. extending the scalars of a k-algebra can create new idempotent
elements. For example, consider the algebraic group of third roots of unity

µ3 : k-alg→ Grp : R 7→ {r ∈ R | r3 = 1},

with coordinate algebra

A = k[µ3] ∼= k[t]/(t3 − 1).

When k = R, SpecA has only two elements, and A has only two non-trivial
idempotents, namely e = (t2 + t + 1)/3 and 1 − e; this corresponds to the
factorization t3 − 1 = (t− 1)(t2 + t+ 1). When k = C, however, SpecA has
three elements, corresponding to the three roots of unity in C (and A has six
non-trivial idempotents).

To resolve these issues, we will need a theory that detects these idempo-
tents over base field extensions, and this is where separable algebras come
into play.

Definition 8.3.1. Let k be a field, and let k be its algebraic closure. A
commutative k-algebra A is called separable if it is finite-dimensional and
A⊗k k is reduced, i.e. does not have non-trivial nilpotent elements.

There exist several equivalent definitions; we mention just a few of them
below, for later use.

Theorem 8.3.2. Let k be a field, let k be its algebraic closure, and let ks be
its separable closure. Let A ∈ k-alg be finite-dimensional. Then the following
statements are equivalent:

(a) A is separable;
(b) A⊗ k ∼= k × · · · × k;
(c) A⊗ ks ∼= ks × · · · × ks;
(d) A is a product of separable extension fields of k;
(e) A⊗ k is reduced;
(f) (only when k is perfect:) A is reduced.

Proof omitted. □

Corollary 8.3.3. (i) Subalgebras, quotients, products and tensor products
of separable algebras are again separable.
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(ii) Let K/k be a field extension. Then A is separable over k if and only if
A⊗k K is separable over K.

Remark 8.3.4. (i) It can be shown that the category of separable k-al-
gebras is anti-equivalent to the category of finite sets equipped with a
continuous action of the absolute Galois group Gal(ks/k). This is a
simple case of what is known as Galois descent: the classification over
the separable closure ks is easy, and the problem over arbitrary fields
reduces to the study of k-forms, i.e. algebraic structures defined over k
that become isomorphic after a base change to the separable closure ks.

(ii) A finite linear algebraic k-group G is called étale 3 if k[G] is separable,
and by (i), this corresponds to a finite set X on which Gal(ks/k) acts
continuously. In that case, the comultiplication ∆: k[G]→ k[G]⊗ k[G]
gives a map X ×X → X commuting with the Galois action, and dual-
izing brings this action back to a continuous action by group automor-
phisms. Thus finite étale linear algebraic groups over k are equivalent
to finite groups equipped with a continuous action of Gal(ks/k) by au-
tomorphisms. If the Galois action on the finite group X is trivial, we
recover the finite constant linear algebraic groups from Example 5.1.12,
with A = kX .

We now go back to the situation where we have an affine k-functor with
some coordinate algebra A, which is a finitely generated k-algebra. The fol-
lowing definition will be our essential tool to study connectedness in general.

Definition 8.3.5. Let A be a finitely generated k-algebra. Then there is a
unique maximal separable subalgebra of A, which we denote by π0(A).

In order to see that π0(A) is unique, notice that if B is any separable
subalgebra, then its dimension is bounded by the number of connected com-
ponents of SpecA⊗ k, since B⊗ k is also a separable k-subalgebra of A⊗ k,
which is spanned by idempotents; moreover, if B and C are two separa-
ble subalgebras of A, then so is the compositum BC, since it is a quotient
of B ⊗ C.

The map A 7→ π0(A) behaves well with respect to various constructions:

Proposition 8.3.6. Let A and B be two finitely generated k-algebras, and
let L/k be a field extension. Then:

(i) If ϕ : A→ B is an algebra morphism, then ϕ(π0(A)) ⊆ π0(B);
(ii) π0(A×B) = π0(A)× π0(B);

3See also Definition 8.4.5(iii) below.
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(iii) π0(A⊗k L) ∼= π0(A)⊗k L;
(iv) π0(A⊗k B) ∼= π0(A)⊗k π0(B).

Proof. For (i), we consider the restriction ϕ|π0(A) → B. The image of this
morphism is a quotient of π0(A), so by Corollary 8.3.3(i), it is a separable
algebra, and is thus contained in π0(B).

To see that (ii) holds, note that π0(A×B) ⊆ π0(A)× π0(B) because the
projections of π0(A × B) to A and B are separable, and π0(A) × π0(B) ⊆
π0(A×B) because the product of two separable algebras is again separable.

The proof of (iii) and (iv) is more involved and will be omitted. □

Remark 8.3.7. Let X be an affine k-functor, with A = k[X], and let π0(X)
be the affine k-functor represented by the separable algebra π0(A). Then
we can think of π0(X) as the functor describing the connected components
of X. Notice that every idempotent e ∈ A is contained in π0(A) because
k[e] is separable. More precisely, if π0(A) = K1× · · · ×Kr for separable field
extensions Ki/k, then each idempotent e ∈ A lies in π0(A) and must therefore
be of the form (e1, . . . , er) with ei ∈ Ki idempotent, i.e., each ei is 0 or 1.
Hence there are precisely 2r idempotents, and precisely r of them cannot be
written as a non-trivial sum of other idempotents. By Theorem 8.2.3, these r
“minimal idempotents” correspond precisely to the r connected components
of Spec(A) via the map e 7→ V (1− e).

Notice that connected components of X over k might break down into
several connected components after base extension, corresponding to what
we see on the level of π0(A), by Proposition 8.3.6(iii). In that sense, the
dimension of the k-algebra π0(A) is sufficient to detect the potential number
of connected components after base extension (even if those are not visible
over k itself).

8.4 Connected components of linear algebraic
groups

We are now fully prepared to study connectedness of linear algebraic groups
in general.

Theorem 8.4.1. Let G be a linear algebraic group defined over k, let A =
k[G] be its coordinate algebra and let N be the nilradical of A. Then the
following are equivalent:

(a) SpecA is connected;
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(b) SpecA is irreducible;
(c) π0(A) = k;
(d) A/N is an integral domain.

Proof. By Lemma 8.2.2(ii), (b) ⇐⇒ (d), and of course (b) =⇒ (a).
Now assume that SpecA is connected; then π0(A) is a separable extension
field of k. The counit ε : A → k restricts to a k-algebra homomorphism
π0(A) → k, which implies that π0(A) = k; hence (a) =⇒ (c). Conversely,
assume that π0(A) = k. Then A does not have non-trivial idempotents, so
by Corollary 8.2.5(i), SpecA is connected; hence (c) =⇒ (a).

We finally show that (c) =⇒ (d). So assume again that π0(A) = k; then
π0(A ⊗ k) = k as well. In order to show that A/N is an integral domain,
we may assume that k = k. In that case4, A/N is the ring of functions on
the group of k-points G(k). Since we have already shown that (c) =⇒ (a),
we know that SpecA is connected; Corollary 8.2.5(iv) now implies that also
G(k) is connected. By Theorem 8.1.1, we can now conclude that G(k) is
irreducible, and hence its ring of functions A/N is an integral domain. □

Definition 8.4.2. If G is a linear algebraic group satisfying each of the four
equivalent conditions of Theorem 8.4.1, then we call G connected.

Corollary 8.4.3. Let G be a linear algebraic group defined over k, and let
K/k be a field extension. Then G is connected if and only if GK is connected.

Proof. This follows from Proposition 8.3.6(iii) and condition (c) of Theo-
rem 8.4.1. □

When G is not connected, the algebra π0(k[G]) is exactly what we need
to analyze the connected components of G.

Proposition 8.4.4. Let G be a linear algebraic group defined over k, and let
A = k[G] be its coordinate algebra. Then π0(A) is a Hopf subalgebra of A.

Proof. Notice that every k-algebra homomorphism f : A → B maps sepa-
rable subalgebras onto separable subalgebras, and in particular f(π0(A)) ⊆
π0(B). Since ∆: A→ A⊗ A and S : A→ A are k-algebra homomorphisms,
we get

∆(π0(A)) ⊆ π0(A⊗ A) ∼= π0(A)⊗ π0(A) and S(π0(A)) ⊆ π0(A);

moreover, the counit ε : A→ k restricts to a k-algebra morphism π0(A)→ k.
This shows that π0(A) is a Hopf subalgebra of A. □

4See also Remark 8.5.17 below.
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Definition 8.4.5. Let G be a linear algebraic k-group, and let A = k[G].

(i) The linear algebraic group associated to the Hopf subalgebra π0(A)
of A will be denoted by π0(G), and is called the group of connected
components of G.

(ii) The kernel of the quotient map G → π0(G) is called the identity com-
ponent of G, and is denoted by G◦.

(iii) The linear algebraic groupG is called étale if π0(A) = A, or equivalently,
if G◦ is trivial.

We list a few properties of π0(G) and G◦ in the next two propositions.

Proposition 8.4.6. Let G be a linear algebraic k-group, and let A = k[G],
with counit ε : A → k. Then k[G◦] ∼= eA for some idempotent e ∈ A with
ε(e) = 1 and π0(eA) = k. In particular, G◦ is connected.

Proof. Consider the counit ε : π0(A)→ k, and use Theorem 8.3.2(d) to write

π0(A) = K1 × · · · ×Kr

where each Ki is a separable extension field of k. Since every idempotent
in π0(A) is mapped to 0 or 1, there is exactly one Ki which is mapped to k
(and which is therefore isomorphic to k), while all others are mapped to 0.
Assume that this happens for i = 1, and let e = (1, 0, . . . , 0) ∈ K1×· · ·×Kr.
Then we can write

A = eA× (1− e)A, (8.1)
and in particular π0(eA) = k and π0((1− e)A) = K2 × · · · ×Kr; notice that
the latter is precisely the augmentation ideal I of π0(A), i.e. the kernel of the
counit ε : π0(A)→ k.

By Proposition 5.2.6, the kernel G◦ of the homomorphism G → π0(G)
is a closed normal subgroup of G, with coordinate algebra k[G◦] ∼= A/IA.
Explicitly, we have I = (1− e)π0(A), and hence, by (8.1),

k[G◦] ∼= A/(1− e)A ∼= eA.

It follows that π0(k[G◦]) ∼= π0(eA) = k, and hence G◦ is connected. □

Proposition 8.4.7. Let G,H be two linear algebraic k-groups and let α : G→
H be a homomorphism.

(i) If H is étale, then α factors through G→ π0(G).
(ii) If G is connected and H is étale, then α is trivial.
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(iii) If G is connected, then α factors through H◦ → H.
(iv) The functors G 7→ π0(G) and G 7→ G◦ commute with base field exten-

sion.
(v) We have π0(G×H) ∼= π0(G)× π0(H) and (G×H)◦ ∼= G◦ ×H◦.

Proof. Write A = k[G] and B = k[H].

(i) We have already observed that every morphism from a separable algebra
to A has its image in π0(A); the result follows by dualizing.

(ii) By (i), α factors through G → π0(G). Since G is connected, however,
π0(G) = 1, and hence α is trivial.

(iii) By (ii), the composition G→ H → π0(H) is trivial. Dually, this means
that the composition π0(B) ↪→ B → A is trivial, in other words, the
restriction of α∗ : B → A to π0(B) is trivial. In particular, α∗ is the
zero map on the augmentation ideal I of π0(B), hence α∗(IB) = 0.
By Proposition 8.4.6, k[H◦] = B/IB. Hence α∗ induces a well defined
Hopf algebra morphism from k[H◦] to A through which α∗ factors. By
dualizing again, we find the required factorization of α.

(iv) Since K[GK ] ∼= k[G] ⊗k K for every field extension K/k, this follows
from Proposition 8.3.6(iii).

(v) Since k[G⊗H] ∼= k[G]⊗k k[H], this follows from Proposition 8.3.6(iv).
□

Corollary 8.4.8. Let
1→ N → G→ Q→ 1

be an exact sequence of linear algebraic k-groups. If N and Q are connected,
then G is connected. Conversely, if G is connected, then Q is connected.

Proof. Assume first that N and Q are connected. Then N is contained in
the kernel of the map G→ π0(G), so by Proposition 5.3.7, this map factors
through G→ Q, and so it induces a quotient map from the connected group
Q to an étale group π0(G). By Proposition 8.4.7(ii), this quotient map is
trivial, which implies that π0(G) = 1, showing that G is connected.

Conversely, assume that G is connected, and consider the composition of
quotient maps G → Q → π0(Q). Again, Proposition 8.4.7(ii) implies that
this map is trivial, and hence π0(Q) = 1, showing that Q is connected. □

Example 8.4.9. (1) The linear algebraic groups Ga, GLn, Tn, Un, Dn are
connected because their coordinate algebra is an integral domain.
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(2) Let G be the linear algebraic group of monomial matrices. Then π0(G)
is the constant algebraic group Symn, and G◦ = Dn.

(3) The natural isomorphism (of affine k-functors, not of k-group functors!)

SLn(R)×Gm(R)→ GLn(R) : (A, r) 7→ A · diag(r, 1, . . . , 1)

defines an isomorphism of k-algebras

k[GLn] ∼= k[SLn]⊗k k[Gm] ∼= k[SLn]⊗k k[t, t
−1],

and hence k[GLn] contains k[SLn] as a subring, which is therefore also an
integral domain; this shows that SLn is connected.

(4) Let k be a field of characteristic p, let n ≥ 2 be an integer, and consider
the algebraic group G = µn of n-th roots of unity over k. Recall that
A = k[µn] ∼= k[t]/(tn − 1).

• If p 6= 0 and n is a power of p, then the nilradical of A is the
ideal N = (t−1); in this case, A/N ∼= k, and hence G is connected.
(Geometrically, G consists of one “thick point” with multiplicity n.)

• Assume next that p = 0 or p > 0 and p ∤ n. Then the nilradical
of A is trivial, and A is not an integral domain (it has zero divisor
t − 1); hence G is disconnected. (Geometrically, G consists of n
points, each with multiplicity 1.)

• Finally, assume that p > 0 and n = pr ·m with p ∤ m and r ≥ 1.
Then the nilradical of A is the ideal N = (tm − 1), but A/N is
not an integral domain (again, it has zero divisor t − 1); hence G
is disconnected. (Geometrically, G consists of m thick points, each
with multiplicity pr.) Notice that in this case, µn

∼= µpr ×µm, so µn

is the product of the connected group µpr and the étale group µm.

8.5 Dimension and smoothness
We will briefly mention some aspects of dimension and smoothness of linear
algebraic groups, without proofs.

Throughout this section, let k be an arbitrary field and let G be a linear
algebraic k-group with coordinate algebra A = k[G]. Denote the nilradical
of A by N .

We begin with the important and useful notion of dimension, which will,
in particular, allow us later to prove certain statements by induction. The
reader should compare this with the earlier Definition 4.2.6.
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Definition 8.5.1. (i) Assume first that G is connected. Then we define
dimG := trdegk(Frac(A/N)), the transcendence degree over k of the
field of fractions of A/N . (Notice that A/N is an integral domain by
Theorem 8.4.1.)

(ii) When G is not connected, we define dimG := dimG◦.

Remark 8.5.2. Equivalently, the dimension of G can be defined to be the
Krull dimension of its coordinate ring A = k[G], i.e., the largest possible
height of a maximal ideal in A (which is a finite number). (The height ht(p)
of a prime ideal p is defined as the largest possible length n of a descending
chain

p = p0 ⊃ p1 ⊃ · · · ⊃ pn

of prime ideals in A.) Moreover, every maximal chain of distinct prime ideals
in A/N has length dimG.

Example 8.5.3. (i) A group G is zero-dimensional if and only if A/N
has transcendence degree 0 over k, if and only A has Krull dimension
0, if and only if A is finite-dimensional over k. (The last equivalence
relies on the Noether Normalization Lemma.) By definition, these are
precisely the finite linear algebraic groups.

(ii) Let G = SLn, A = k[G] ∼= k[t11, . . . , tnn] / (det(tij)−1). Notice that A is
itself an integral domain, and hence dimG is equal to the transcendence
degree of Frac(A) over k, which is n2 − 1.

There is a close relation between the dimension of a linear algebraic group
and the dimension of its Lie algebra. They very often coincide, but not
always; this is precisely what gives rise to the notion of smoothness.

Proposition 8.5.4. Let G be a linear algebraic k-group, and let g = Lie(G).
Then dimG ≤ dim g.

Definition 8.5.5. A linear algebraic group G is called smooth if dimG =
dimLie(G).

Example 8.5.6. Typical examples of non-smooth groups are the linear al-
gebraic groups µp and αp over fields k of characteristic p. Compute as an
exercise that these 0-dimensional groups have a 1-dimensional Lie algebra.

Remark 8.5.7. We have preferred to give the shortest and most direct def-
inition of smoothness, but the notion also makes sense for algebraic varieties
(as k-functors) in general. In that setting, an affine k-functor V with coor-
dinate algebra A = k[V ] is called smooth if Vk is regular, i.e., if for every
maximal ideal m of A, the local ring Am is regular.
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For perfect fields, we can see directly from the coordinate algebra whether
the linear algebraic group is smooth.

Proposition 8.5.8. Let G be a linear algebraic k-group, where k is perfect,
and let A = k[G]. Then G is smooth if and only if A is reduced, i.e. A does
not contain non-zero nilpotent elements.

Example 8.5.9. Let k be a non-perfect field of characteristic p, and let a ∈ k
be an element that is not a p-th power. Then the subgroup G of Ga × Ga

defined by Y p = aXp is reduced but not smooth.

On the other hand, for fields of characteristic zero, the situation is very
nice.

Theorem 8.5.10 (Cartier, 1962). Let G be a linear algebraic k-group, where
char(k) = 0. Then G is smooth.

Proposition 8.5.11. Quotients and extensions of smooth linear algebraic
groups are smooth.

Remark 8.5.12. The kernel of a homomorphism of smooth linear algebraic
groups need not be smooth. For example, in characteristic p, the kernels
of Gm → Gm : x 7→ xp and of Ga → Ga : x 7→ xp are precisely µp and αp,
respectively, and these are not smooth.

The following useful results illustrate that dimensions behave nicer when
the groups are smooth.

Proposition 8.5.13. Let G be a smooth linear algebraic k-group and let H
be a closed subgroup of G. Then the following are equivalent:

(a) dimH = dimG;
(b) H has finite index in G;
(c) G◦ = H◦.

Corollary 8.5.14. Let G be a smooth connected linear algebraic k-group and
let H be a proper closed subgroup of G. Then dimH < dimG.

Proposition 8.5.15. Let G be a smooth connected linear algebraic k-group
and let H be a closed subgroup of G. If H(k) = G(k), then H = G.

Theorem 8.5.16. If 1→ N → G→ Q→ 1 is exact, then

dimG = dimN + dimQ.
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Remark 8.5.17. From now on, we will often restrict to smooth linear alge-
braic groups over an algebraically closed field k. In this case, the coordinate
algebra A = k[G] is reduced, and in fact, this means that it is the coordinate
algebra of an algebraic variety in the classical sense (see Proposition 4.2.3).
In such cases, it is safe to identify G with its group of k-points G(k), and we
will often do so. We will freely make use of well-known notions and construc-
tions from group theory, such as normal subgroups, normalizers, centralizers,
etc., the construction and definition of which is far from obvious in the gen-
eral setting, but which coincides with the classical notions applied on G(k)
in the case of smooth linear algebraic groups over algebraically closed fields.

Of course, it is a restriction to only consider smooth linear algebraic
groups over an algebraically closed field, but on the other hand, this will give
us substantial information even for general linear algebraic groups. Indeed,
if G is a linear algebraic group defined over an arbitrary field k, then we can
base change to the algebraic closure to get a group Gk which is defined over an
algebraically closed field; and if Gk is not smooth, then we can “smoothen”
it by replacing its coordinate algebra A = k[Gk] by A/N , where N is the
nilradical of A, i.e. the ideal consisting of the nilpotent elements of A.

We make this final observation into a proper definition that we will need
later.

Definition 8.5.18. Let G be an algebraic group over a perfect field k, with
coordinate algebra A = k[G], and let N be the nilradical of A. Then it
turns out that N is a Hopf ideal of A, so the quotient A/N defines a closed
subgroup of G that we denote by Gred. (In general, Gred need not be normal
in G! Moreover, if k is not perfect, then N is not always a Hopf ideal, so the
assumption that k be perfect is necessary to define Gred.)
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An (algebraic) torus is a linear algebraic k-group that becomes isomorphic
to Gm × · · · × Gm over the algebraic closure, and as such, tori are rather
easy to understand. However, we will see later that understanding the tori
inside a given linear algebraic group G already reveals important aspects of
the structure of G, and that is the main reason to study tori separately in
this chapter.

We will begin, however, by studying characters in linear algebraic groups;
these are, in some sense, dual to subtori, and the two notions are interrelated.
Characters will also play an important role in the representation theory of
linear algebraic groups.

9.1 Characters
Definition 9.1.1. Let G be a linear algebraic k-group, and let A = k[G].

(i) A character of G is a homomorphism χ : G → Gm, or equivalently, a
Hopf algebra homomorphism χ∗ : k[t, t−1]→ A.

(ii) Let X(G) be the set of all characters of G. We make X(G) into an
abelian group by setting

(χ+ χ′)R(g) := χR(g) · χ′
R(g) ∈ R×

for all χ, χ′ ∈ X(G), all R ∈ k-alg, and all g ∈ G(R); we call it the
character group of G.

(iii) If Γ is a finitely generated abelian group, then the group algebra kΓ is
a finitely generated k-algebra (see Example 2.1.4(4)). If we define

∆(γ) := γ ⊗ γ, S(γ) := γ−1, ε(γ) := 1,

for all γ ∈ Γ, then kΓ becomes a Hopf algebra.
(iv) A non-zero element a ∈ A is group-like if ∆(a) = a⊗ a. Any group-like

element a automatically satisfies S(a) = a−1 and ε(a) = 1.
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Lemma 9.1.2. Let G be a linear algebraic k-group, and let A = k[G]. The
map

α : X(G)→ {a ∈ A | a is group-like} : χ 7→ χ∗(t)

is a group isomorphism.

Proof. Notice that the set of group-like elements in A is indeed closed under
multiplication in A because ∆ is an algebra homomorphism. We first check
that χ∗(t) is indeed group-like for every χ ∈ X(G). Indeed, we have ∆(t) =
t ⊗ t in k[Gm] = k[t, t−1], and hence ∆(χ∗(t)) = χ∗(t) ⊗ χ∗(t) since χ∗ is a
Hopf algebra homomorphism.

Conversely, if a ∈ A is group-like, then we define

ψ : k[t, t−1]→ k[G] : t 7→ a.

Then (∆◦ψ)(t) =
(
(ψ⊗ψ)◦∆

)
(t), and this implies that ψ is a Hopf algebra

homomorphism, and hence ψ = χ∗ for some χ ∈ X(G). This already shows
that α is a bijection.

We finally check that α is a group homomorphism. Indeed, let χ1, χ2 ∈
X(G). Then

(χ1+χ2)
∗(t) = (χ1+χ2)(idA)(t) = χ1(idA)(t)·χ2(idA)(t) = χ∗

1(t)·χ∗
2(t). □

9.2 Diagonalizable groups
Before we move on to tori, we study the related class of diagonalizable groups.

Definition 9.2.1. Let G be a linear algebraic k-group, and let A = k[G].
Then G is called diagonalizable if there is a Hopf algebra isomorphism A ∼= kΓ
for some finitely generated abelian group Γ.

This definition might look surprising, and the connection with the clas-
sical notion of diagonalizable matrix groups might be unclear at this point.
This will become more transparant when we look at two examples.

Examples 9.2.2. (1) Let Γ = Z, and recall that kZ ∼= k[t, t−1]. (Notice that
the isomorphism is indeed a Hopf algebra isomorphism.) We recognize
this as the coordinate algebra of the linear algebraic group G = Gm, i.e.
Gm is diagonalizable.

(2) Let Γ = Z/nZ, and recall that k[Z/nZ] ∼= k[t]/(tn − 1). (Again, notice
that the isomorphism is indeed a Hopf algebra isomorphism.) We recog-
nize this as the coordinate algebra of the linear algebraic group G = µn;
see Example 5.1.2(6). Hence µn is diagonalizable.
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Recall that every finitely generated abelian group is a direct product
of (finite or infinite) cyclic groups, which means that we have essentially
discovered all diagonalizable groups.

Theorem 9.2.3. Let G be a linear algebraic k-group. Then G is diagonal-
izable if and only if it is isomorphic to a finite direct product of Gm’s and
µn’s.

Proof. Observe that the group algebra k(Γ × Γ′) is isomorphic, as a Hopf
algebra, to kΓ⊗kkΓ

′. The result now follows from the classification of finitely
generated abelian groups together with Examples 9.2.2 and Remark 5.1.10.

□

Remark 9.2.4. This is one of the many instances where the functorial ap-
proach to linear algebraic groups shows its advantages. In the classical set-
ting, the corresponding result has an assumption on char(k), but this as-
sumption is not needed here. Indeed, recall that when char(k) = p | n, the
coordinate algebra k[µn] is not reduced, and hence in this case µn does not
arise from an affine variety in the classical sense; see Proposition 4.2.2.

Our next goal is to characterize diagonalizable groups by their characters,
or equivalently, by their group-like elements. We first need a lemma.

Lemma 9.2.5. Let G be a linear algebraic k-group, and let A = k[G]. Then
the group-like elements of A are linearly independent over k.

Proof. Exercise; use the fact that ∆ is an algebra homomorphism. □

Proposition 9.2.6. Let G be a linear algebraic k-group, and let A = k[G].
Then G is diagonalizable if and only if A is spanned by its group-like ele-
ments (as a vector space). Moreover, there is an anti-equivalence between
diagonalizable groups and finitely generated abelian groups, given by

G↔ X(G).

Proof. Let Γ ⊆ A be the set of group-like elements in A. Recall from
Lemma 9.1.2 that Γ is an abelian group and that there is an isomorphism
α : X(G)→ Γ. Let kΓ be the group k-algebra of the group Γ.

Assume first that A = 〈Γ〉; by Lemma 9.2.5, this implies that Γ is a basis
for the k-vector space A. So we already have A ∼= kΓ as vector spaces. Now
notice that by definition, the product of elements of Γ coincides with their
product in the algebra A; hence A ∼= kΓ as k-algebras. Observe now that this
isomorphism is also a Hopf algebra isomorphism since the comultiplication
on the generating set Γ of both algebras coincides.
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Conversely, assume that G is diagonalizable, with A ∼= kΓ for some
finitely generated abelian group Γ. Then by definition, A = 〈Γ〉 as a vector
space, and the elements of Γ are indeed group-like in kΓ.

Finally, notice that if ϕ : G→ H is a morphism of linear algebraic groups,
then the dual map ϕ∗ : k[H] → k[G] maps group-like elements of k[H] to
group-like elements of k[G]. □

We now come to the important connection with representation theory.
Definition 9.2.7. Let G be a linear algebraic k-group and let (V,m) be a
G-representation, with corresponding natural transformation ρ : G→ GLV .

(i) A non-zero v ∈ V is an eigenvector for the representation, with corre-
sponding character χ, if

ρ(g)(v) = χ(g)v

for all g ∈ G(R) and all v ∈ VR, or equivalently, if

m(v) = α(χ)⊗ v

for all v ∈ V . (Notice that g(α(χ)) = χ(g).) Observe that eigenvectors
correspond to one-dimensional subrepresentations.

(ii) Define Vχ to be the largest subspace of V such that G acts on Vχ
through the character χ, i.e., Vχ is the subspace of V consisting of all
eigenvectors with character χ:

Vχ :=
{
v ∈ V | m(v) = α(χ)⊗ v

}
.

If Vχ is non-trivial, we call it an eigenspace for the G-representation
with character χ.

(iii) We call (V,m) diagonalizable if it can be written as a sum of one-
dimensional subrepresentations, or in other words, if V is spanned by
eigenvectors, i.e., V can be written as a sum of eigenspaces. (As we will
see in a moment, it is then the direct sum of all its eigenspaces.)

Remark 9.2.8. If a non-zero v ∈ V satisfies m(v) = a⊗ v for some a ∈ A,
then by the comodule axioms, a is necessarily group-like; Lemma 9.1.2 then
implies that a = α(χ) for some character χ, and hence v is an eigenvector.
Theorem 9.2.9. Let G be a linear algebraic k-group, and let A = k[G]. Then
G is diagonalizable if and only if every representation of G is diagonalizable,
if and only if every representation (V,m) of G has a decomposition

V =
⊕

χ∈X(G)

Vχ. (9.1)
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Proof. Assume first that G is diagonalizable, and let (V,m) be a G-represen-
tation. We have to show that V is spanned by eigenvectors, i.e., by elements
u such that m(u) ∈ A⊗ku. By Proposition 9.2.6, we know that A is spanned,
as a k-vector space, by its subset Γ of group-like elements.

Now let v ∈ V be arbitrary, and write

m(v) =
∑
γ∈Γ

γ ⊗ uγ,

where each uγ ∈ V , and where the sum is a finite sum. We now apply the
comodule identities (see Definition 5.4.1(ii)) on v:

(idA ⊗m)(m(v)) = (∆⊗ idV )(m(v)) and
(ε⊗ idV )(m(v)) = idV (v)

yield ∑
γ∈Γ

γ ⊗m(uγ) =
∑
γ∈Γ

γ ⊗ γ ⊗ uγ and (9.2)∑
γ∈Γ

uγ = v, (9.3)

respectively. Since Γ is a basis of A, equation (9.2) shows that m(uγ) =
γ ⊗ uγ ∈ A⊗ uγ for each γ ∈ Γ; equation (9.3) shows that v ∈ 〈uγ | γ ∈ Γ〉.
This shows that V is spanned by elements u such that m(u) ∈ A⊗ ku.

Conversely, assume that every representation ofG is diagonalizable. Then
in particular, the regular representation (V,m) = (A,∆) of G is diagonaliz-
able, and hence A is spanned by its eigenvectors. Let a ∈ A be an eigenvector
for the regular representation with character χ; then ∆(a) = m(a) = α(χ)⊗a.
Applying the identity mult ◦ (id⊗ ε) ◦∆ = id on a yields

ε(a)α(χ) = a,

i.e. a is a scalar multiple of α(χ). It follows that A is spanned by its group-like
elements, i.e. G is diagonalizable.

We finally show that a given G-representation (V,m) is diagonalizable if
and only if (9.1) holds. Clearly, every subspace Vχ is diagonalizable, hence
(9.1) implies that (V,m) itself is diagonalizable. Conversely, assume that
(V,m) is diagonalizable. Then V is spanned by eigenvectors, and since every
eigenvector belongs to some Vχ, we certainly have V =

∑
χ∈X(G) Vχ. In

order to show that the sum is direct, assume that there exists a finite set of
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characters χ1, . . . , χℓ and corresponding non-zero eigenvectors v1, . . . , vℓ such
that v1 + · · ·+ vℓ = 0. Applying m yields

α(χ1)⊗ v1 + · · ·+ α(χℓ)⊗ vℓ = 0,

which contradicts Lemma 9.2.5. □

9.3 Tori
Definition 9.3.1. Let G be a linear algebraic k-group.

(i) The group G is a torus if Gk
∼= (Gm)

n for some integer n ≥ 1, where
k is the algebraic closure of k. Equivalently, G is a torus if and only if
Gk is a smooth connected diagonalizable group.

(ii) The group G is called of multiplicative type if Gk is a diagonalizable
group. In particular, every torus is of multiplicative type.

As we indicated, tori are especially useful when considered as subgroups
of a larger linear algebraic group. We will now show how we can associate a
finite group to every such torus; this finite group will play an important role
later when we describe the structure of reductive linear algebraic groups.

Theorem 9.3.2. Let G be a smooth linear algebraic group over an alge-
braically closed field k, and let T be a torus contained in G.

(i) Let V be a (not necessarily faithful) finite-dimensional G-representation.
Let

M := {χ ∈ X(T ) | Vχ 6= 0};
then M is a finite set. The normalizer1 NG(T ) permutes the subspaces
{Vχ | χ ∈ M}, and hence induces an action of NG(T ) on M . The
kernel of this action contains CG(T ), and coincides with CG(T ) if the
representation is faithful.

(ii) The group W (G, T ) := NG(T )/CG(T ) is finite.

Proof. (i) By Theorem 9.2.9, V decomposes as V =
⊕

χ∈X(T ) Vχ with re-
spect to T . Since V is finite-dimensional, the set M is finite. Notice
that when we identify G with G(k) and V with V (k), the subspaces Vχ
can be interpreted as k-subspaces

Vχ = {v ∈ V | t.v = χ(t)v for all t ∈ T},
1We define the normalizer and centralizer as concrete subgroups of G(k); see Re-

mark 8.5.17.
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where we have written t.v in place of ρ(t)(v).
Assume now that g ∈ NG(T ), and define, for each character χ ∈ X(T ),
a new character g.χ by

(g.χ)(t) := χ(g−1tg)

for all t ∈ T . We claim that g maps Vχ to Vg.χ. Indeed, let v ∈ Vχ be
arbitrary; then for all t ∈ T ,

t.(g.v) = g.(g−1tg).v = g.χ(g−1tg)v = χ(g−1tg)g.v = (g.χ)(t) · g.v,
(9.4)

showing that g.v ∈ Vg.χ indeed. Obviously, non-empty eigenspaces are
mapped to non-empty eigenspaces, and hence NG(T ) acts on the finite
set M .
We will now determine the kernel of this action. So let g ∈ NG(T );
then g is in the kernel of the action if and only if g.χ = χ for all χ ∈M .
By equation (9.4), this is equivalent to

t.g.v = χ(t)g.v (9.5)

for all t ∈ T , all χ ∈ M , and all v ∈ Vχ. Notice that χ(t) is a scalar,
and χ(t)v = t.v since v ∈ Vχ; hence χ(t)g.v = g.t.v. It follows that
(9.5) is in turn equivalent with

t.g.v = g.t.v

for all t ∈ T and all v ∈ Vχ, for all χ ∈ M . Since V is spanned by the
subspaces Vχ, this is equivalent with saying that the commutator [g, t]
acts trivially on V , for all t ∈ T . In particular, CG(T ) is contained in
the kernel of the action of NG(T ) on M , and if the representation is
faithful, then they coincide.

(ii) Consider an arbitrary finite-dimensional faithful representation for G
(which always exists by Theoreom 5.4.6). Then by (i), W (G, T ) acts
faithfully on the finite set M , and is thus isomorphic to a subgroup of
Sym|M |. In particular, W (G, T ) is a finite group. □

Example 9.3.3. Let G = GLn, and consider the k-dimensional torus

T = {diag(a1, . . . , ak, 1, . . . , 1) | a1, . . . , ak ∈ k×}.

ThenNG(T ) = Monk×GLn−k, whereas CG(T ) = Dk×GLn−k. HenceW (G, T ) ∼=
Symk.
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We end this chapter by mentioning a result that we will need later (applied
in the case when T is a k-torus).

Theorem 9.3.4 (Rigidity of tori). Let k be an arbitrary field, let G be a
connected linear algebraic k-group, and let T be a linear algebraic k-group of
multiplicative type. Assume that G acts on T by automorphisms. Then this
action is trivial.

Proof omitted. □

Remark 9.3.5. The rigidity of tori is a generalization of Theorem 9.3.2.
Indeed, when we apply it to the situation where T is a subtorus of G, then
NG(T ) acts on T by inner automorphisms. Passing to the identity component
NG(T )

◦ then implies that the action of the connected group NG(T )
◦ on T

is trivial, i.e. NG(T )
◦ ≤ CG(T ). Hence NG(T )

◦ = CG(T )
◦, and in particular

NG(T )/CG(T ) is a finite group.
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We now come to the study of solvable linear algebraic groups. Giving a
complete classification of such groups is beyond hope, but as we will see, we
will nevertheless be able to prove some strong structure theorems for this
class of algebraic groups.

We will then study solvable subgroups of general linear algebraic groups;
this will lead us to the theory of Borel subgroups, which will play an impor-
tant role in our later understanding of reductive groups.

10.1 The derived subgroup of a linear alge-
braic group

To give a rigorous definition of solvable linear algebraic groups, we need the
notion of a derived subgroup, which is similar to but more delicate than the
definition for concrete groups.

Definition 10.1.1. Let G be a linear algebraic k-group. Then we define the
derived subgroup D(G) of G as the intersection of all closed normal subgroups
N of G for which G/N is abelian.

Remark 10.1.2. Recall from section 5.3 that quotients of linear algebraic
groups are a delicate matter. Fortunately, if G is a smooth linear algebraic
group over an algebraically closed field k, then (G/N)(k) ∼= G(k)/N(k) for
each closed normal subgroup N of G.

We will now give an explicit construction of the derived subgroup of any
linear algebraic k-group. Recall that if Γ is a concrete group, then the derived
subgroup D(Γ) is

D(Γ) = 〈[g, h] | g, h ∈ Γ〉,

where [g, h] = ghg−1h−1 is the commutator1 of g and h.
1Note that [g, h] is sometimes defined to be g−1h−1gh, but the definition we have chosen

agrees with the fact that our group actions are written as left actions.
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Construction 10.1.3. LetG be a linear algebraic k-group, and letA = k[G].
For each n ∈ Z≥0, we define the map (between k-functors)

ψn : G
2n → G : (g1, h1, . . . , gn, hn) 7→

n∏
i=1

[gi, hi]

for all gi, hi ∈ GR, for all R ∈ k-alg. There are corresponding maps

ψ∗
n : A→ A⊗2n,

and for each n, the following diagram commutes:

A A⊗ A

A⊗2n A⊗n ⊗ A⊗n

∆

ψ∗
2n ψ∗

n ⊗ ψ∗
n

∼
(10.1)

Let In := ker(ψ∗
n); then we have a descending chain of ideals

I1 ⊇ I2 ⊇ · · · ⊇ In ⊇ . . .

Let I := ∩n≥1In; then I is again an ideal in A. In fact, I is the defining ideal
of some closed subgroup of G, i.e. a Hopf ideal of A. (Notice that the ideals In
are not Hopf ideals in general, since the maps ψn are no morphisms.) Indeed,
by the commutative diagram (10.1), the comultiplication ∆ on A induces a
homomorphism

A/I2n
∆−−→ A/In ⊗ A/In

for all n, and therefore a homomorphism

A/I
∆−−→ A/I ⊗ A/I,

making A/I into a Hopf algebra.
The closed subgroup corresponding to the Hopf ideal I is precisely the

derived subgroup D(G).

Remark 10.1.4. In a similar way, we can construct the commutator [H1, H2]
for all closed subgroups H1, H2 of a linear algebraic k-group G.

Proposition 10.1.5. Let G be a smooth connected linear algebraic group over
an algebraically closed field k. Then D(G) is also smooth and connected.
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Proof. Let A = k[G], and let In and I be as in Construction 10.1.3. No-
tice that G is smooth if and only if A is reduced, i.e. has no non-trivial
nilpotents, and that G is connected if and only if A has no non-trivial
idempotents. Now observe that the map ψ∗

n induces an injective mapping
A/In → A⊗2n ∼= k[G2n]. Since G2n is smooth and connected, k[G2n] has no
non-trivial nilpotents nor idempotents, and hence the same holds for A/In,
for all n. We conclude that A/I has no non-trivial nilpotents or idempotents
either. (Indeed, assume that e ∈ A/I is idempotent and lift e to some f ∈ A;
then f 2− f ∈ I, so f 2− f ∈ In for all n. This can only happen if f is 0 or 1
in each A/In, but then e must be 0 or 1.) This shows that D(G) is indeed
smooth and connected. □

We now come to the definition of nilpotent and solvable linear algebraic
groups.

Definition 10.1.6. Let G be a linear algebraic k-group.

(i) Let D0(G) := G and Di(G) := D(Di−1(G)) inductively for all i ≥ 1.
Then

G = D0(G) ≥ D1(G) ≥ D2(G) ≥ . . .

is called the derived series of G.
(ii) Let D[0](G) := G and D[i](G) := [G,D[i−1](G)] inductively for all i ≥ 1.

Then
G = D[0](G) ≥ D[1](G) ≥ D[2](G) ≥ . . .

is called the lower central series series of G.
(iii) The k-group G is called solvable if Dn(G) = 1 for some n.
(iv) The k-group G is called nilpotent if D[n](G) = 1 for some n.

Remark 10.1.7. If k is algebraically closed, then D(G)(k) ∼= D(G(k)), but
this is false in general. For instance, if k = F2 and G = SL2, then D(G) = G,
and hence D(G)(k) ∼= SL2(F2), but

D(G(k)) = D(SL2(F2)) ∼= D(Sym3) 6∼= Sym3 .

10.2 The structure of solvable linear algebraic
groups

In this section, we will always assume that G is a smooth linear algebraic
group over an algebraically closed field k. A crucial fact about connected
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solvable groups (that we will not prove here) is the so-called Borel fixpoint
theorem; a consequence of this result is the Lie–Kolchin theorem, stating
that such a group can always be represented by upper-triangular matrices.
We will only indicate this approach, and we will instead give a self-contained
proof below.

In order to state the Borel fixpoint theorem, we first have to introduce
the notion of a complete variety.

Definition 10.2.1. An algebraic variety2 Z is complete if for every variety Y ,
the projection map π : Y ×Z → Y is a closed map, i.e. it maps closed subsets
to closed subsets.

Examples 10.2.2. (1) The affine line A1 is not complete. For instance, the
closed subset S = {(x, y) ∈ A2 | xy = 1} of A2 = A1 × A1 is projected
onto the non-closed subset π(S) = {x ∈ A1 | x 6= 0} of A1.

(2) It turns out that for each integer n ≥ 1, the projective space Pn is a
complete variety. Since a closed subvariety of a complete variety is again
complete, this implies that in fact every projective variety is complete.

We will mention a couple of useful facts about complete varieties, some
of which we will need later.

Proposition 10.2.3. (i) A closed subvariety of a complete variety is com-
plete.

(ii) Every projective variety is complete.
(iii) If X is complete, then its image under any morphism X → Y is closed

and complete.
(iv) An affine variety is complete if and only if it has dimension zero, i.e.

if and only if it is a finite set of points.

Proof omitted. □

We can now state the important Borel fixed-point theorem.

Theorem 10.2.4 (Borel fixed-point theorem). Let G be a smooth connected
solvable linear algebraic group over an algebraically closed field k, acting on
a non-empty complete k-variety X. Then this action has a fixed point, i.e.
there is an x ∈ X fixed by G.

2We have not given a formal definition of an algebraic variety, and we will not attempt
to do so (avoiding phrases such as “integral, separated scheme of finite type over an
algebraically closed field”). It will be sufficient for our purposes to understand what a
projective variety is: it is the set of zeroes V (S) in projective space Pn for a set S of
homogeneous polynomials in n+ 1 variables.
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Proof omitted. □

Theorem 10.2.5 (Lie–Kolchin theorem). Let G be a smooth connected
solvable linear algebraic group over an algebraically closed field k, and let
ρ : G → GLV be a finite-dimensional G-representation. Then V has a basis
such that ρ(G) is upper-triangular.

Proof. Using Borel’s fixed-point theorem, there are two different ways to
prove this. The first approach is inductive. Observe that through the G-rep-
resentation, G acts on the projective space Pn−1, where n = dimk V . Since
projective space is a complete variety, Borel’s fixed-point theorem implies
that there is a fixed point x ∈ Pn−1 for the G-action, i.e. there is a one-
dimensional subspace of V which is stabilized by G. Take the first basis
vector of V to be a generator of this subspace, and proceed by induction.

The second approach is direct, and quite elegant, but requires some fa-
miliarity with Grassmann varieties. Let F(V ) be the flag variety of V , i.e.
the variety with as points the maximal flags V1 ⊂ V2 ⊂ · · · ⊂ Vn (with
dimk Vi = i for each i), viewed as a subvariety of the projective variety
Gr1(V ) × · · · × Grn(V ), where Gri(V ) is the Grassmann variety consisting
of the i-dimensional subspaces of V . Then F(V ) is a complete variety, and
hence the induced action of G on F(V ) has a fixed point, i.e. G(Vi) = Vi for
all i. With respect to the corresponding basis of V , the group G is upper-
triangular. □

Historically, the Borel fixed-point theorem was a generalization of the
Lie–Kolchin triangularization theorem, so in a sense we have been cheating to
prove Lie–Kolchin’s theorem using Borel’s theorem for which we omitted the
proof. It is instructive to look at a direct proof of the Lie–Kolchin theorem.
We first need a lemma.

Lemma 10.2.6. Let V be a finite-dimensional vector space over an alge-
braically closed field k, and let S be a set of commuting elements in Endk(V ).
Then there exists a basis for V such that all elements of S are upper-
triangular.

Proof. We leave the proof of this fact as an exercise. Use induction on dimk V ,
and use the fact that if some f ∈ S is not a scalar multiple of the identity,
then f has an eigenspace U 6= V . Show that U is stable under all elements
of S, and apply the induction hypothesis on U and V/U . □

Direct proof of Theorem 10.2.5. As we pointed out above, it suffices to show
that the elements of G(k) have a common eigenvector, because then we can
apply induction on the dimension of V . We will prove this by induction on
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the length of the derived series of G. If G is commutative, then the result
follows from Lemma 10.2.6. (Notice that Lemma 10.2.6 shows that there is
a basis for V such that G(k) ≤ Tn(k), but since G is smooth, this implies
that G ≤ Tn.)

Assume now that G is not commutative, and apply the induction hy-
pothesis on D(G) to deduce that the elements of N := D(G) have a common
eigenvector. This means that there is some character χ of N for which the
space

Vχ = {v ∈ V | g.v = χ(g)v for all g ∈ N}
is non-trivial. Let S be the non-empty set of all χ ∈ X(N) for which Vχ 6= 0,
and let W be the sum of all eigenspaces Vχ for χ ∈ S. Then W has a finite
direct sum decomposition

W =
⊕
χ∈S

Vχ.

Since G normalizes N , the same computation as in (9.4) shows that G(k)
permutes the subspaces Vχ, χ ∈ S.

Now choose χ ∈ S arbitrarily, and let H ≤ G(k) be the stabilizer of Vχ.
Since S is finite, H is a finite index subgroup of G(k). We claim that, in
fact, H = G(k). Notice that

H = {g ∈ G(k) | χ(n) = χ(g−1ng) for all n ∈ N(k)},

which is an algebraic condition3, i.e. H is a closed subgroup of G(k). Since
G(k) is connected and H has finite index, this implies that H = G(k) as
claimed. It follows that G(k) stabilizes Vχ. In particular, there is a represen-
tation ρ : G→ GL(Vχ) ∼= GLd, where d = dimVχ.

Next, we claim that N(k) acts trivially on Vχ. For each n ∈ N(k) and
each v ∈ Vχ, we have ρ(n).v = χ(n)v, with χ(n) ∈ k. Since n is a product
of commutators of elements of G(k), and since every commutator in GLd
has determinant 1, this implies that ρ(n) has determinant 1, and therefore
χ(n)d = 1. We deduce that the image of the character χ : N → Gm takes
values in µd ≤ Gm. If char(k) = 0 or char(k) = p ∤ d, then µd is étale, and
since N is connected, it follows from Proposition 8.4.7(ii) that χ is trivial.
If p | d, then this argument shows that the image of χ is contained in µpr

(where pr is the highest p-power dividing d), but since µpr(k) = 1, we can
again conclude that the action of N(k) on Vχ is trivial. This proves the claim
that N(k) acts trivially on Vχ in all cases.

3Notice that χ is a morphism of algebraic groups, so expressing that χ(n) = χ(g−1ng)
for a specific n ∈ N(k) is an algebraic condition, i.e. it is a polynomial condition w.r.t. a
given embedding in affine space. The intersection of (infinitely many) algebraic varieties
is again an algebraic variety, so H is algebraic.
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Therefore, there is an induced action ofG(k)/N(k) on Vχ. SinceG(k)/N(k)
is an abelian group, we know that its elements have a common eigenvector
in Vχ, and this is then also a common eigenvector for the elements of G(k),
which is what we had to prove. □

Remark 10.2.7. Each of the four hypotheses “smooth”, “connected”, “solv-
able” and “algebraically closed” is needed; the theorem becomes false as soon
as one of these hypotheses is omitted.

As a consequence of the Lie–Kolchin theorem, we can prove that the
set of unipotent elements in a connected solvable group behaves nicely. For
commutative groups, we had already encountered this in Theorem 6.2.8.

Corollary 10.2.8. Let G be a smooth connected solvable linear algebraic
group over an algebraically closed field k. Then the set Gu is a closed con-
nected nilpotent normal subgroup, and the quotient G/Gu is a torus.

Proof. Without loss of generality, we may assume by Theorem 10.2.5 that
G is a closed subgroup of Tn ≤ GLn. Then g ∈ G(k) is a unipotent element
if and only if it is a unipotent matrix in GLn(k), i.e. if and only if all its
diagonal elements are equal to 1. Hence the map

ϕ : G→ Gn
m : g 7→ diag(g)

is a morphism, with kernel Gu, and hence Gu is a closed normal subgroup
of G. Now observe that Gu is a subgroup of Un ≤ GLn, which is easily seen
to be nilpotent; hence Gu is nilpotent itself. Next, notice that T = G/Gu is
isomorphic to some subgroup of Gn

m, and since it is smooth and connected
(as a quotient of a smooth connected group), it follows that it is a torus.

We finally show that Gu is connected. Observe that when G is abelian,
Gu is a quotient of G, which is therefore connected (see Theorem 6.2.8). This
implies that (G/D(G))u is connected. On the other hand, D(G) ≤ Gu, and
the exact sequence

1→ Gu/D(G)→ G/D(G)→ T → 1

shows that every unipotent element of G/D(G) is contained in Gu/D(G),
and hence Gu/D(G) = (G/D(G))u is connected. Since D(G) is itself also
connected (see Proposition 10.1.5), it follows by Corollary 8.4.8 that Gu is
connected as well. □

With some more effort, one can show the following structure theorem for
solvable groups.
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Theorem 10.2.9. Let G be a smooth connected solvable linear algebraic
group over an algebraically closed field k. Then:

(i) Gu is a closed connected nilpotent normal subgroup.
(ii) The quotient G/Gu is a torus.
(iii) There is a series of closed subnormal subgroups

1 = N0 ≤ N1 ≤ · · · ≤ Nd = Gu

of G, such that for each i ∈ {1, . . . , d}, the group Ni−1 is normal in Ni

and Ni/Ni−1
∼= Ga.

(iv) The extension
1→ Gu → G→ G/Gu → 1

is split, i.e. Gu has a complement in G. Moreover, any two such
complements are conjugate in G.

(v) Every semisimple element s ∈ G(k) is contained in a complement of
Gu in G. Moreover, CG(s) is smooth and connected.

Proof. We have already shown (i) and (ii), and we omit the proof of the other
facts. □
Definition 10.2.10. Let G be a smooth connected linear algebraic group
over an algebraically closed field k. A maximal torus of G is a torus of G
that is not strictly contained in a larger torus of G.

If G is a smooth connected solvable linear algebraic group over an al-
gebraically closed field k, then maximal tori are precisely the complements
of Gu. Indeed, notice that such a complement is indeed a torus since it is
isomorphic to G/Gu, and it is maximal w.r.t. inclusion since any subgroup of
G properly containing it, would intersect Gu non-trivially and hence cannot
be a torus. Conversely, the following corollary shows in particular that every
torus is contained in a complement of Gu.
Corollary 10.2.11. Let G be a smooth connected solvable linear algebraic
group over an algebraically closed field k, and let H be a commutative subgroup
of G consisting of semisimple elements only. Then H is contained in a
complement of Gu (which is a maximal torus). Moreover, any two such
maximal tori are conjugate by an element of CG(H).

Proof. We will prove the result by induction on dim(G). Notice that the re-
sult is obvious if all elements of H are central in G, because a central semisim-
ple element is contained in every complement of Gu, by Theorem 10.2.9(iv)
and (v), and CG(H) = G in this case.
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So assume that there is some h ∈ H \ Z(G). Then CG(h) is a proper
smooth connected subgroup of G, and H ≤ CG(h). Since G is smooth and
connected, dimCG(h) < dimG. By the induction hypothesis, H is contained
in a complement S of CG(h)u in CG(h), and any two such maximal tori S
and S ′ are conjugate by an element of CCG(h)(H) = CG(H).

It remains to show that S (and then also S ′) is a complement of Gu in G.
By Theorem 10.2.9(v), h is contained in such a complement T of Gu, which
is a maximal torus in G, so in particular T ≤ CG(h). Since CG(h)u is a
subgroup of Gu, it follows that T is a complement of CG(h)u in CG(h). By
Theorem 10.2.9(iv) applied on CG(h), S and T are conjugate in CG(h), and
hence S is also a complement of Gu in G. □

We mention the following classification result, which apart from the the-
ory we have just seen, also requires a good deal of algebraic geometry.

Theorem 10.2.12. Let G be a smooth connected 1-dimensional linear alge-
braic group over an algebraically closed field k. Then G ∼= Ga or G ∼= Gm.

Proof omitted. □

10.3 Borel subgroups
We now go back to the situation where G is a general (smooth) linear alge-
braic group over an algebraically closed field k. As we will see, understanding
the solvable subgroups inside G will be important for determining the struc-
ture of G. This brings us to the notion of Borel subgroups.

Definition 10.3.1. Let G be a smooth linear algebraic group over an alge-
braically closed field k. A Borel subgroup of G is a maximal closed smooth
connected solvable subgroup of G.

The following fact is an important feature of algebraic groups, but its
proof requires more theory than we have covered.

Theorem 10.3.2. Let G be a smooth linear algebraic group over an alge-
braically closed field k, and let B be a Borel subgroup of G. Then G/B is a
projective k-variety.

Proof omitted. □

Together with Borel’s fixed-point theorem (Theorem 10.2.4), it has the
following corollary.
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Corollary 10.3.3. Let G be a smooth linear algebraic group over an alge-
braically closed field k, and let B and B′ be two Borel subgroups of G. Then
B and B′ are conjugate.

Proof. Consider the action of B on the projective variety G/B′ which is
given by left multiplication on the set of left cosets of B′ in G. Then by
Borel’s fixed-point theorem, this action has a fixed point, i.e. there is some
left coset gB′ which is stable under left multiplication by B, i.e. bgB′ = gB′

for all b ∈ B. This implies g−1Bg ⊆ B′. Since both g−1Bg and B′ are Borel
subgroups of G, the maximality of both implies that g−1Bg = B′. □

We have seen that maximal tori inside solvable groups play an important
role, but this is also true for general linear algebraic groups.

Proposition 10.3.4. Let G be a smooth connected linear algebraic group over
an algebraically closed field k. Then all maximal tori in G are conjugate.
Even more, G acts transitively by conjugation on the set{

(T,B) | B a Borel subgroup of G, T a maximal torus in B
}
.

Proof. Notice that a torus is a closed connected solvable subgroup, so by
definition, every torus T ofG is contained in some Borel subgroup B ofG, and
if T is a maximal torus in G, then it is also a maximal torus in B. The result
now follows from Corollary 10.3.3 together with Theorem 10.2.9(iv). □

Remark 10.3.5. When k is not algebraically closed, it is no longer true that
all maximal tori of G are conjugate, but by Proposition 10.3.4 they become
conjugate after base change to k. The classification of maximal tori over k
thus becomes an “arithmetic problem” determined by k/k, which is typically
studied using Galois cohomology.

Since all maximal tori are conjugate, the dimension of a maximal torus
is a well-defined number.

Definition 10.3.6. Let G be a smooth connected linear algebraic group over
an algebraically closed field k. Then the rank rk(G) of G is defined to be the
dimension of a maximal torus in G.

We will now further illustrate the importance of Borel subgroups by in-
dicating that their structure already determines some of the structure of G.
For instance, the center of B essentially determines the center of G, and if
B is nilpotent, then already G was nilpotent to begin with. We start with a
lemma.
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Lemma 10.3.7. Let G be a smooth linear algebraic group over an alge-
braically closed field k, and let B be a Borel subgroup of G.

(i) If G is connected and G 6= 1, then B 6= 1.
(ii) The index [NG(B) : B] is finite.
(iii) NG(NG(B)) = NG(B).

Proof. (i) Assume B = 1. Then G = G/B is simultaneously an affine
variety and a projective variety. Since G is connected, this can only be
true if G = 1.

(ii) Let H = NG(B)◦ be the connected component of the normalizer of B
in G. Then B is a Borel subgroup of H, which is normal. This implies
that H/B is simultaneously an affine variety and a projective variety,
which can only be true if H/B = 1, and hence B = H = NG(B)◦. It
follows that B is a finite index subgroup of NG(B).

(iii) Assume that g ∈ G normalizes NG(B). Then it also normalizes the
identity component NG(B)◦ = B. □

Remark 10.3.8. In fact, Borel subgroups are self-normalizing: we have
NG(B) = B. This is a deep and very useful fact, known as “Chevalley’s
normalizer theorem”.

Proposition 10.3.9. Let G be a smooth connected linear algebraic group
over an algebraically closed field k, and let B be a Borel subgroup of G. Then

Z(G)◦red ≤ Z(B) ≤ Z(G).

Proof. Notice that Z(G)◦red is a closed connected smooth solvable subgroup,
so by definition, it is contained in some Borel subgroup B′ of G. Since B′ is
conjugate to B and conjugation acts trivially on Z(G)◦red, this implies that
in fact Z(G)◦red ≤ B, and consequently Z(G)◦red ≤ Z(B).

Now let z ∈ Z(B) be arbitrary. Consider the map

ϕ : G→ G : g 7→ gzg−1.

Then ϕ is constant on every left B-coset, i.e. ϕ(gb) = ϕ(gb′) for all g ∈ G
and all b, b′ ∈ B. Therefore, ϕ induces a morphism (of algebraic varieties)

ϕ : G/B → G : gB 7→ gzg−1.

Because G/B is a projective variety and G is an affine variety, Proposi-
tion 10.2.3 implies that the map ϕ has finite image, and hence ϕ has finite
image as well. Since G and hence also G/B is connected, this implies that ϕ
is a constant map. Hence z ∈ Z(G). □
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Proposition 10.3.10. Let G be a smooth connected linear algebraic group
over an algebraically closed field k, and let B be a Borel subgroup of G. If B
is nilpotent, then G is nilpotent.

Proof. We prove the result by induction on dim(G). It is trivial when
dim(G) = 0, so assume dim(G) ≥ 1, which implies by Lemma 10.3.7(i)
that dim(B) ≥ 1 as well. Since B is nilpotent, the last non-trivial term of
the lower central series of B is a connected non-trivial central subgroup N
of B, and hence dim(Z(B)) ≥ 1. By Proposition 10.3.9, this implies that
dim(Z(G)) ≥ 1 as well. By definition, dim(Z(G)◦red) = dim(Z(G)), so we de-
duce that the dimension of G/Z(G)◦red is strictly lower than dim(G). Notice
that Z(G)◦red ≤ B, hence B/Z(G)◦red is a Borel subgroup of G/Z(G)◦red, which
is nilpotent. By induction, G/Z(G)◦red is nilpotent, and hence G is nilpotent
as well. □
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Ch
ap

te
r 11 Semisimple and

reductive groups

We continue with our assumption that G is a smooth linear algebraic group
over an algebraically closed field k. Our aim is to understand the structure of
such a G in its full generality, but as we have seen, already our understanding
of unipotent, or more generally solvable, linear algebraic groups, is limited,
in the sense that there is no hope of classifying such groups.

On the other hand, we will see that when we get rid of the unipotent or
solvable “part” of a linear algebraic group G, then we are left with a so-called
reductive or semisimple group, respectively, and it will turn out that we have
a very good understanding of such groups: we will be able to classify them.
An essential ingredient of the structure of such a group will be given by its
so-called root datum.

11.1 Semisimple and reductive linear algebraic
groups

We first introduce the notions of reductive and semisimple groups. We begin
by stating the following useful fact.
Lemma 11.1.1. Let G be a linear algebraic group over an algebraically closed
field k. Let H be a closed subgroup of G and let N be a closed normal subgroup.
If H and N are solvable (resp. unipotent, resp. connected, resp. smooth), then
HN is solvable (resp. unipotent, resp. connected, resp. smooth).

Proof. In each case, use the fact that HN/N ∼= H/(H ∩ N), and that HN
is an extension of HN/N by N , together with the fact that these properties
(solvable, unipotent, connected, smooth) are preserved by quotients and by
extensions. In each case, this requires a different argument, and we omit the
details. □
Definition 11.1.2. Let G be a smooth linear algebraic group over an alge-
braically closed field k.

(i) The radical R(G) is the largest smooth closed connected solvable normal
subgroup of G.

121



(ii) The unipotent radical Ru(G) is the largest smooth closed connected
unipotent normal subgroup of G; it coincides with R(G)u, the unipotent
part of R(G).

(iii) We call G semisimple if R(G) is trivial.
(iv) We call G reductive if Ru(G) is trivial.

The following characterizations are useful.

Lemma 11.1.3. Let G be a smooth linear algebraic group over an alge-
braically closed field k.

(i) G is semisimple if and only if G does not have non-trivial smooth closed
connected commutative normal subgroups.

(ii) G is reductive if and only if R(G) is a torus.
(iii) G is reductive if and only if the only non-trivial smooth closed connected

commutative normal subgroups of G are tori.

Proof. (i) Assume that G does not have non-trivial smooth closed con-
nected commutative normal subgroups, and suppose that G is not
semisimple, i.e. R(G) 6= 1. Notice that both R(G) and D(G) are char-
acteristic subgroups of G, so each group occuring in the derived series
of R(G) is itself a smooth closed connected normal subgroup of G. The
last non-trivial term of this series is commutative, which contradicts
our assumption.

(ii) Notice that Ru(G) = R(G)u, so G is reductive if and only if R(G) is a
smooth connected solvable group with trivial unipotent part. By the
structure theorem of solvable groups (Theorem 10.2.9), this is equiva-
lent to the fact that R(G) is a torus.

(iii) Assume that every non-trivial smooth closed connected commutative
normal subgroup of G is a torus. Suppose that G is not reductive, i.e.
Ru(G) 6= 1. As in the proof of (i), each group occuring in the derived
series of Ru(G) is itself a smooth closed connected normal subgroup
of G. The last non-trivial term of this series is commutative, and by
our assumption, it is a torus. This contradicts the fact that Ru(G) is a
non-trivial unipotent group. □

The name “semisimple” might sound mysterious at this point. Our next
aim is to explain that semisimple groups are, in some sense, closely related
to simple linear algebraic groups.

Definition 11.1.4. Let G be a linear algebraic k-group.
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(i) We call G simple if it is smooth, connected, non-commutative, and has
no non-trivial proper normal subgroups.

(ii) We call G almost-simple if it is smooth, connected, non-commutative,
and has no infinite proper normal subgroups.

(iii) We say that G is the almost-direct product of its closed subgroups
G1, . . . , Gr if the product map

G1 × · · · ×Gr → G : (g1, . . . , gr) 7→ g1 · · · gr

is a surjective homomorphism with finite kernel. (In particular, the
subgroups Gi are normal in G, and they pairwise commute.)

Clearly, an almost-direct product of almost-simple linear algebraic groups
is semisimple. The converse is also true:

Theorem 11.1.5. Let G be a semisimple linear algebraic group over an
algebraically closed field k. Then G is an almost-direct product of its almost-
simple closed subgroups, namely the minimal closed connected infinite normal
subgroups of G. (These are called the almost-simple factors of G.)

Proof omitted. □

Corollary 11.1.6. Let G be a semisimple linear algebraic group over an
algebraically closed field k. Then:

(i) Every quotient of G is semisimple.
(ii) If N is a smooth connected normal subgroup of G, then N is the product

of the almost-simple factors contained in N , and is centralized by the
remaining ones. In particular, N is semisimple.

(iii) G is perfect, i.e. D(G) = G.
(iv) The center of G is a finite group of multiplicative type.

Proof. Statements (i) and (ii) are immediate from Theorem 11.1.5. To prove
(iii), it suffices to observe that D(H) = H for any almost-simple group H,
which is obvious from the definitions. (Recall that D(H) is smooth and
connected, and hence cannot be a non-trivial finite group.) Finally, to prove
(iv), observe that1 Z(G)◦red is a closed smooth connected commutative normal
subgroup of G, and hence Z(G)◦red ≤ R(G) = 1, which shows that Z(G) is a
finite group. □

1When G is an algebraic group over an algebraically closed field k, which is not neces-
sarily smooth, then we can smoothen it as in Remark 8.5.17 to obtain a closed subgroup
Gred of G. (In general, Gred need not be normal in G!)
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We now show that reductive groups are, in a precise sense, not too far
away from semisimple groups.
Theorem 11.1.7. Let G be a connected reductive linear algebraic group over
an algebraically closed field k. Then

R(G) = Z(G)◦red and G = R(G)D(G).

Moreover, R(G) ∩ D(G) is finite, and D(G) is semisimple.

Proof. We will first show that R(G) = Z(G)◦red. Since Z(G)◦red is a closed
smooth connected commutative normal subgroup of G, it is certainly con-
tained in R(G). Conversely, the fact that G is reductive implies that R(G)
is a torus. Notice that G acts on R(G) by conjugation. By rigidity of
tori (see Theorem 9.3.4), this action is trivial, i.e. R(G) ≤ Z(G). Since
R(G) is smooth and connected, this implies R(G) ≤ Z(G)◦red and hence
R(G) = Z(G)◦red.

Next, notice that R(G)D(G) is a normal subgroup of G. Then the group
G/R(G)D(G) is a quotient of the commutative group G/D(G), and a quo-
tient of the semisimple group G/R(G); hence G/R(G)D(G) is a commutative
semisimple group, which is therefore trivial. It follows that G = R(G)D(G).

Our next step is to show that R(G) ∩ D(G) is finite. Write T = R(G) =
Z(G)◦red, and notice that T is a diagonalizable subgroup of G. Consider a
finite-dimensional faithful representation G ↪→ GLV , and use Theorem 9.2.9
to write

V =
⊕

χ∈X(T )

Vχ.

Since T is central in G, the elements of G stabilize each Vχ; hence there is
an induced monomorphism

α : G→ GL(Vχ1)× · · · × GL(Vχr),

where χ1, . . . , χr are the characters of T for which Vχ 6= 0. Hence

α(D(G)) ≤ SL(Vχ1)× · · · × SL(Vχr).

On the other hand, by definition of the eigenspaces Vχ,

α(T ) ≤ Sc(Vχ1)× · · · × Sc(Vχr),

where Sc(Vχ) denotes the group of scalar matrices of GL(Vχ). Since SL(Vχ)∩
Sc(Vχ) is finite for each χ, it follows that α(T ∩ D(G)) is finite, and since α
is a monomorphism, this implies that T ∩ D(G) is also finite.

We finally show that D(G) is semisimple. Notice that the homomorphism
D(G) → G/R(G) is surjective, and has finite kernel R(G) ∩ D(G). Since
G/R(G) is semisimple, this implies that D(G) is semisimple as well. □
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Remark 11.1.8. In what follows, we will be mainly interested in reductive
groups, and not just in semisimple groups. One of the reasons is that many
naturally occuring groups, such as GLn, are reductive but not semisimple.
Another reason is that the centralizer of a torus in a semisimple group is
usually not semisimple, but it is reductive again, and these centralizers are
important subgroups for various reasons. See, for example, Proposition 11.2.8
below.

Recall that the rank of a smooth linear algebraic group over an alge-
braically closed field was defined to be the dimension of a maximal torus.
For reductive groups, the following related notion is sometimes more natu-
ral.

Definition 11.1.9. Let G be a connected reductive linear algebraic group
over an algebraically closed field k. Then the semisimple rank of G is defined
to be the rank of its derived group D(G) (which is a semisimple group by
Theorem 11.1.7).

Example 11.1.10. The rank of G = GLn is equal to n, but its semisimple
rank is equal to the rank of D(G) = SLn, which is n− 1.

11.2 The root datum of a reductive group
To each reductive linear algebraic group (over an algebraically closed field k),
we will attach a combinatorial object, called the root datum, which will de-
termine G uniquely up to isomorphism. (More precisely, it will be associated
to a pair (G, T ), where G is a reductive group, and T is a maximal torus
of G.) Before we introduce this combinatorial object, we recall the notion
of characters, we introduce cocharacters, and we define a pairing between
characters and cocharacters.

Definition 11.2.1. Let T be a torus over an algebraically closed field k.

(i) A character of T is a morphism χ : T → Gm.
(ii) The character group of T is the free abelian group

X(T ) := {characters of T},

where the group addition is given by (χ1 + χ2)(g) = χ1(g)χ2(g) for all
g ∈ T .

(iii) A cocharacter of T is a morphism λ : Gm → T .
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(iv) The cocharacter group of T is the free abelian group

Y (T ) := {cocharacters of T},

where the group addition is given by (λ1 + λ2)(g) = λ1(g)λ2(g) for all
g ∈ T .

(v) We define a pairing

〈·, ·〉 : X(T )× Y (T )→ End(Gm) ∼= Z : (χ, λ) 7→ 〈χ, λ〉 := χ ◦ λ.

Hence for all t ∈ Gm(R) = R×, we have χ(λ(t)) = t⟨χ,λ⟩.

Example 11.2.2. Let T = Dn be the group of invertible diagonal n-by-n ma-
trices. Then X(T ) is a free abelian group of rank n, with basis (χ1, . . . , χn),
where

χi : Dn → Gm : diag(a1, . . . , an) 7→ ai.

Similarly, Y (T ) is a free abelian group of rank n, with basis (λ1, . . . , λn),
where

λi : Gm → Dn : t 7→ diag(1, . . . , t, . . . , 1)

(where the t is on the i-th position). The pairing between X(T ) and Y (T )
is then given by

〈χi, λj〉 = δij,

where δij is the Kronecker delta.

We are now ready to introduce the notion of roots in a reductive linear
algebraic group. In order to define it, we recall that a linear algebraic group
G acts on its Lie algebra g = Lie(G) through its adjoint representation

Ad: G→ GLg.

Definition 11.2.3. Let G be a reductive linear algebraic group over an alge-
braically closed field k, and let T be a maximal torus in G. By Theorem 9.2.9,
the Lie algebra g has a decomposition

g = g0 ⊕
⊕

χ∈X(T )\{0}

gχ,

where
gχ = {v ∈ g | g.v = χ(g)v for all g ∈ T}

for all χ ∈ X(T ); in particular,

g0 = {v ∈ g | g.v = v for all g ∈ T}
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is the subspace of elements of g fixed by T .
A root of (G, T ) is defined to be a non-zero character χ ∈ X(T ) \ {0} for

which gχ 6= 0. Notice that the set of roots is a finite subset of X(T ), which
we will denote by R(G, T ).

We will illustrate this concept with several examples. Notice that the
set R(G, T ) is a subset of X(T ), which is a free abelian group of finite rank
(say n); hence we can view it as a subset of the Euclidean space Rn through
the isomorphism X(T ) ∼= Zn ⊂ Rn, which will allow us to visualize the set
of roots.

Examples 11.2.4. (1) Let G = GL2. Then g = gl2 = Mat2(k), with
[A,B] = AB −BA. Consider the maximal torus

T =

{(
x1

x2

)
| x1x2 6= 0

}
.

Then X(T ) = Zχ1 ⊕ Zχ2, where

(aχ1 + bχ2).

(
x1

x2

)
= xa1x

b
2

for all a, b ∈ Z. By the definition of the adjoint representation, T acts
on g by conjugation:(

x1
x2

)(
a b
c d

)(
x−1
1

x−1
2

)
=

(
a x1

x2
b

x2

x1
c d

)
.

This shows that g has a decomposition

g = g0 ⊕ gχ1−χ2 ⊕ gχ2−χ1 ,

where dim g0 = 2 and dim gχ1−χ2 = dim gχ2−χ1 = 1. Hence

R(G, T ) = {α,−α} where α = χ1 − χ2.

When we identify X(T ) with Z2 ⊂ R2, we get

R(G, T ) = {±(e1 − e2)} ⊂ Z2 ⊂ R2.
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(2) Let G = SL2. Then g = sl2 = {A ∈ Mat2(k) | tr(A) = 0}. Consider the
maximal torus

T =

{(
x

x−1

)
| x 6= 0

}
.

Then X(T ) = Zχ, where

(aχ).

(
x

x−1

)
= xa

for all a ∈ Z. Again, T acts on g by conjugation:(
x

x−1

)(
a b
c −a

)(
x−1

x

)
=

(
a x2b

x−2c −a

)
.

This shows that g has a decomposition

g = g0 ⊕ g2χ ⊕ g−2χ,

where dim g0 = 1 and dim g2χ = dim g−2χ = 1. Hence

R(G, T ) = {α,−α} where α = 2χ.

When we identify X(T ) with Z1 ⊂ R1, we get

R(G, T ) = {±2e1} ⊂ Z1 ⊂ R1.

(3) Let G = PGL2 = GL2/Gm. Then g = gl2/sc2. Consider the maximal
torus

T =

{(
x1

x2

)
| x1x2 6= 0

}
/ Gm.

Then X(T ) = Zχ, where

(aχ).

(
x1

x2

)
=

(
x1
x2

)a

for all a ∈ Z. We compute the action of T on g by conjugation:(
x1

x2

)(
a b
c d

)(
x−1
1

x−1
2

)
=

(
a x1

x2
b

x2

x1
c d

)
.

This shows that g has a decomposition

g = g0 ⊕ gχ ⊕ g−χ,
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where dim g0 = 1 and dim gχ = dim g−χ = 1. Hence

R(G, T ) = {α,−α} where α = χ.

When we identify X(T ) with Z1 ⊂ R1, we get

R(G, T ) = {±e1} ⊂ Z1 ⊂ R1.

(4) Let G = GLn. Then g = gln = Matn(k). Consider the maximal torus

T =


x1 . . .

xn

 | x1 · · ·xn 6= 0

 .

Then X(T ) = Zχ1 ⊕ · · · ⊕ Zχn, where

(a1χ1 + · · ·+ anχn).

x1 . . .
xn

 = xa11 · · ·xann

for all a1, . . . , an ∈ Z. We compute the action of T on g by conjugation:x1 . . .
xn


a11 · · · a1n

... . . . ...
an1 · · · ann


x

−1
1

. . .
x−1
n

 =

 a11 · · · x1

xn
a1n

... . . . ...
xn

x1
an1 · · · ann


(i.e. the matrix with as (i, j)-th entry xi

xj
aij). This shows that g has a

decomposition
g = g0 ⊕

⊕
i ̸=j

gχi−χj
.

Notice that dim g0 = n and dim gχi−χj
= 1 for all i 6= j. Hence

R(G, T ) = {χi − χj | 1 ≤ i, j ≤ n, i 6= j}.

When we identify X(T ) with Zn ⊂ Rn, we get

R(G, T ) = {±(ei − ej) | 1 ≤ i < j ≤ n} ⊂ Zn ⊂ Rn.

For example, for n = 3, we get the following configuration:
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X

Y

Z

Although the set of roots (which we will call a root system) already
provides a lot of information about the group (it will determine the type of the
algebraic group), we will need another piece of data to complete the picture.
This is captured by the following definition. Notice that this definition is
purely combinatorial and does not involve any reference to linear algebraic
groups whatsoever.

Definition 11.2.5. A root datum is a quadruple

Ψ = (X,R,X∨, R∨),

where

• X and X∨ are free Z-modules of finite rank, equipped with a bilinear
pairing 〈·, ·〉 : X ×X∨ → Z;

• R and R∨ are finite subsets of X and X∨, respectively, equipped with
a bijection α↔ α∨, such that:

(i) 〈α, α∨〉 = 2 for all α ∈ R;
(ii) sα(R) ⊆ R for all α ∈ R, where

sα : X → X : x 7→ x− 〈x, α∨〉α;

(iii) the Weyl group

W (Ψ) := 〈sα | α ∈ R〉 ≤ Aut(X)

is a finite group.

130



A root datum is called reduced if α ∈ R implies 2α 6∈ R, or equivalently, if
the only multiples of α ∈ R again contained in R are α and −α.

To get a feeling for these objects, we will show a few properties of the
maps sα; they show that, in some sense, the sα are (abstract) reflections.

Proposition 11.2.6. Let Ψ = (X,R,X∨, R∨) be a root datum, and α ∈ R.
Then:

(i) sα(α) = −α;
(ii) s2α = idX ;
(iii) sα(x) = x for all x such that 〈x, α∨〉 = 0;
(iv) If q ∈ Q is such that qα ∈ R, then (qα)∨ = 1

q
α∨. In particular,

(−α)∨ = −α∨, and hence sα = s−α.

Proof. Notice that (i) and (iii) are obvious from the definitions. We will now
show (ii). So let x ∈ X be arbitrary; then

sα(sα(x)) = sα
(
x− 〈x, α∨〉α

)
= sα(x)− 〈x, α∨〉sα(α)

= x− 〈x, α∨〉α + 〈x, α∨〉α = x.

The last statement (iv) is more involved, and we will omit its proof. □

Our next goal is to attach a root datum to a given reductive linear alge-
braic group (together with a given maximal torus). We begin with a lemma.

Lemma 11.2.7. Let G be a reductive linear algebraic group over an alge-
braically closed field k, and let T be a maximal torus in G. Then the action
of the group W (G, T ) = NG(T )/CG(T ) on X(T ) stabilizes the set R(G, T )
of roots.

Proof. It follows from Theorem 9.3.2 that W (G, T ) acts on the set

M = {χ ∈ X(T ) | gχ 6= 0} = R(G, T ) ∪ {0}.

Since the elements of NG(T ) stabilize the space g0 of fixed vectors, we con-
clude that there is an induced action of W (G, T ) on R(G, T ). □

The following result will define the coroots.

Proposition 11.2.8. Let G be a reductive linear algebraic group over an
algebraically closed field k, and let T be a maximal torus in G. Let X(T )
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be the character group of T , let Y (T ) be the cocharacter group of T , and let
R = R(G, T ) ⊂ X(T ) be the set of roots. For each α ∈ R, we let

Tα := ker(α)◦red, Gα := CG(Tα).

Then W (Gα, T ) contains a unique non-trivial element sα, and there is a
unique element α∨ ∈ Y (T ) such that

sα(x) = x− 〈x, α∨〉α

for all x ∈ X(T ). Moreover, 〈α, α∨〉 = 2.

Proof. We omit the proof. The crucial point is that Gα is a reductive group
of semisimple rank 1 (see Definition 11.1.9). Since every semisimple group
of rank 1 is isomorphic to either SL2 or PGL2, the other statements can then
be shown by looking at each of these two cases separately. □

The cocharacter α∨ is called the coroot of α, and the set of all coroots is
denoted by R∨(G, T ).

To each root α, we can associate a so-called root group Uα:

Proposition 11.2.9. Let G be a reductive linear algebraic group over an
algebraically closed field k, let T be a maximal torus in G, and let α ∈ R(G, T )
be a root. Then:

(i) There is a unique subgroup Uα of G isomorphic to Ga, such that for
each isomorphism uα : Ga → Uα, we have

t · uα(x) · t−1 = uα
(
α(t)x

)
,

for all t ∈ T (k) and all x ∈ k = Ga(k).
(ii) The group Uα is the unique subgroup of G normalized by T with Lie

algebra gα.
(iii) Let Tα := ker(α)◦red and Gα := CG(Tα) as before. Then Gα = 〈T, Uα, U−α〉.

Proof omitted. □

We have assembled all the necessary facts to prove that we can associate
a root datum to any reductive group.

Theorem 11.2.10. Let G be a reductive linear algebraic group over an al-
gebraically closed field k, and let T be a maximal torus in G. Then

Ψ(G, T ) :=
(
X(T ), R(G, T ), Y (T ), R∨(G, T )

)
is a reduced root datum.
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Proof. We already know that X(T ) and Y (T ) are free modules of equal rank,
equipped with a pairing 〈·, ·〉 (see Definition 11.2.1(v)), and that R = R(G, T )
and hence also R∨ = R∨(G, T ) are finite. The fact that 〈α, α∨〉 = 2 holds
for each root α is contained in Proposition 11.2.8. The same proposition also
shows that sα ∈ W (Gα, T ) ≤ W (G, T ); since W (G, T ) stabilizes the set R by
Lemma 11.2.7, this shows that sα(R) ⊆ R. Moreover, the fact that W (G, T )
is a finite group (see Theorem 9.3.2) shows that the group 〈sα | α ∈ R〉 is
also finite. (In fact, it coincides with W (G, T ), but it requires more effort
to show this.) The fact that the root datum is always reduced, is somewhat
more delicate, and we will omit its proof. □

Before we give examples, we mention the fundamental fact that a reduc-
tive linear algebraic group over an algebraically closed field k is completely
determined by its root datum and the field k only.

Theorem 11.2.11. (i) Let G be a reductive linear algebraic group over an
algebraically closed field k, and let T and T ′ be two maximal tori in G.
Then Ψ(G, T ) and Ψ(G, T ′) are isomorphic.

(ii) Let k be an algebraically closed field. Each reduced root datum arises
from a reductive linear algebraic group over k.

(iii) Let G and G′ be two reductive linear algebraic groups over the same
algebraically closed field k, and let T and T ′ be maximal tori in G and
G′, respectively. Assume that Ψ(G, T ) and Ψ(G′, T ′) are isomorphic
root data. Then G and G′ are isomorphic. More precisely, there is an
isomorphism from G to G′ mapping T to T ′.

Proof omitted. □

We now come to examples.

Examples 11.2.12. (1) Let G = SL2, and let T be as in Example 11.2.4(2).
Then

X = X(T ) = Zχ with χ. ( x
x−1 ) = x;

X∨ = Y (T ) = Zλ with λ.t = ( t
t−1 ) ;

R = R(G, T ) = {α,−α} with α = 2χ;

R∨ = R∨(G, T ) = {α∨,−α∨} with α∨ = λ.

Observe that (α ◦ α∨)(t) = (2χ ◦ λ)(t) = t2, so indeed 〈α, α∨〉 = 2. We
have W (G, T ) = W (Ψ) = 〈sα, s−α〉 = 〈sα〉 = {1, sα}. Hence we can
write

Ψ(SL2, T ) ∼=
(
Z, {−2, 2},Z, {−1, 1}

)
,
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with 〈x, y〉 = xy, and where 2
∨←→ 1 and −2 ∨←→ −1.

Notice that ker(α) is a group of order 2; hence Tα = ker(α)◦red = 1, and
in particular Gα = G. The unique non-trivial element sα of W (Gα, T ) is
the image of nα := ( 0 1

−1 0 ) ∈ NG(T ) \ CG(T ) in W (G, T ).
We claim that the root group Uα is given by

Uα =

{(
1 x

1

) ∣∣∣ x ∈ k} .
Consider the isomorphism

uα : Ga → Uα : x 7→
(
1 x

1

)
.

(This is of course not the only isomorphism from Ga → Uα, but the
choice is irrelevant.) We check that the condition from Proposition 11.2.9
is satisfied. So let t = ( s

s−1 ) be arbitrary; then indeed

t · uα(x) · t−1 =

(
s

s−1

)(
1 x

1

)(
s−1

s

)
=

(
1 s2x

1

)
= uα

(
s2x
)
= uα

(
α(t)x

)
for all x ∈ k. Similarly, it can be checked that

U−α =

{(
1
x 1

) ∣∣∣ x ∈ k} .
Notice that G = 〈T, Uα, U−α〉 by Proposition 11.2.9(ii); in fact, G =
〈Uα, U−α〉 in this case.

(2) Let G = PGL2, and let T be as in Example 11.2.4(3). In this case, α = χ
and α∨ = 2λ, and we get

Ψ(PGL2, T ) ∼=
(
Z, {−1, 1},Z, {−2, 2}

)
,

with 〈x, y〉 = xy, and where 1
∨←→ 2 and −1 ∨←→ −2.

Observe that the root systems of PGL2 and SL2 are isomorphic, but their
root data are not.

(3) Let G = Gm; then G is a torus, so we let T = G. Observe that G
has no roots in this case. (The group G is reductive of rank 1, but has
semisimple rank 0.) We have

Ψ(Gm, T ) ∼=
(
Z, ∅,Z, ∅

)
.
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(4) Let G = GLn, and let T be as in Example 11.2.4(4). Define the characters
χi and the cocharacters λi as in Example 11.2.2. Let

R = {αij | i 6= j}, αij := χi − χj;

R∨ = {α∨
ij | i 6= j}, α∨

ij := λi − λj.

Notice that 〈α, α∨〉 = 2 for every α ∈ R. It is not too hard to check that

sαij
(χk) =


χj if k = i;

χi if k = j;

χk if k 6= i, j.

Hence sαij
acts on the basis {χ1, . . . , χn} of X as the transposition (ij)

on the set {1, . . . , n}. This implies that

W = 〈sα | α ∈ R〉 ∼= Symn .

Observe that the groups Gα = CG(Tα) are isomorphic to GL2 × Gn−2
m ;

they have rank n but semisimple rank 1.
We now describe the root groups of G (w.r.t. T ). For each i 6= j and
each x ∈ k, we write Eij(x) for the matrix with 1’s on the diagonal, with
x on position (i, j), and with 0’s everywhere else. Let

Uij := {Eij(x) | x ∈ k} .

Then it is quickly verified that Uij is the root group corresponding to
Uαij

, for each i 6= j. Notice that all the root groups Uij with i < j
are upper triangular, while all the root groups Uij with i > j are lower
triangular.

11.3 Classification of the root data
In this section, we want to present the classification of root data, mostly
without proofs. To begin, we distinguish a few degenerate cases.

Definition 11.3.1. Let Ψ = (X,R,X∨, R∨) be a root datum.

(i) We call Ψ a toral root datum if R = R∨ = ∅.
(ii) We call Ψ a semisimple root datum if R generates a finite index sub-

group of X.

The reason for this terminology can easily be guessed:
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Proposition 11.3.2. Let G be a reductive linear algebraic group over an
algebraically closed field k, let T be a maximal torus in G, and let Ψ = Ψ(G, T )
be the corresponding root datum. Then

(i) Ψ is toral if and only if G is a torus;
(ii) Ψ is semisimple if and only if G is semisimple.

Proof. We omit the proof. The key ingredient is the fact that the center of
G coincides with the intersection

⋂
α∈R ker(α). □

From now on, we focus on semisimple root data. The set of roots R
already contains a lot of structure on its own, although it is not sufficient to
recover the algebraic group uniquely up to isomorphism (as we have seen in
the examples SL2 vs. PGL2). This additional structure of the set R is known
as a root system.

Definition 11.3.3. (i) Let V be a finite-dimensional vector space over Q.
A subset R of V is called a root system in V , if:

(a) R is finite, spans V (as a vector space), and does not contain 0;
(b) For each α ∈ R, there is a (unique) reflection sα with vector α

stabilizing the set R;
(c) For all α, β ∈ R, the element sα(β)− β is an integer multiple of α.

If in addition

(d) For each α ∈ R, the only multiple of α which lies again in R is −α,

then the root system is called reduced.
(ii) The rank of the root system is defined to be the dimension of V .
(iii) If (V1, R1), . . . , (Vn, Rn) are root systems, then the direct sum of these

root systems is the root system (V1 ⊕ · · · ⊕ Vn, R1 t · · · tRn).
(iv) A root system is called indecomposable or irreducible if it cannot be

written as the direct sum of root systems of lower rank.

Proposition 11.3.4. Let Ψ = (X,R,X∨, R∨) be a semisimple root datum.
Then R is a root system in the Q-vector space X ⊗Z Q.

Proof. Notice that 0 6∈ R because 〈α, α∨〉 = 2 for all α ∈ R. Moreover, for all
α, β ∈ R, we have 〈β, α∨〉 ∈ Z because α∨ ∈ X∨, which shows that sα(β)−β
is an integer multiple of α. The fact that Ψ is a semisimple root system
implies that R spans V as a vector space. The other facts are clear. □
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Remark 11.3.5. As we already pointed out, the converse is more delicate,
and there is no unique root datum that one can associate to a given root
system. Instead, the following is true: if (V,R) is a root system (where V is
a finite-dimensional Q-vector space), then for any choice of a lattice X in V
lying between the root lattice P and the weight lattice Q of (V,R), there is
a unique semisimple root datum Ψ = (X,R,X∨, R∨) w.r.t. the root system
(V,R) and this choice of X. Since P has finite index in Q, there is only
a finite number of choices for X and hence a finite number of root data
associated to the given root system (V,R).

We have seen in Theorem 11.2.11 that the root datum of a reductive
linear algebraic group over an algebraically closed field uniquely determines
the group up to isomorphism. The root system does not determine the group
uniquely, but it almost does.
Theorem 11.3.6. Let G and G′ be two reductive linear algebraic groups over
the same algebraically closed field k, and let T and T ′ be maximal tori in G
and G′, respectively. Assume that Ψ(G, T ) and Ψ(G′, T ′) are root data with
isomorphic root systems. Then G and G′ are isogenous. More precisely,
there is an isogeny from G to G′ mapping T to T ′.

Proof omitted. □

The root systems have been classified, and this will associate a certain
type to each reductive linear algebraic group. In order to describe the different
root systems, we will need the notion of a base.
Definition 11.3.7. Let R be a root system in the Q-vector space V . A
subset S ⊂ R is called a base for R if it is a basis for V , and if each root
β ∈ R can be written as β =

∑
α∈S mα α, where the mα are integers of the

same sign, i.e. either all mα ≥ 0 or all mα ≤ 0. Once a base has been fixed,
we refer to the elements of the base as the simple roots.

It is a non-trivial fact that every root system has a base, but we will take
this for granted.
Example 11.3.8. Consider the root system associated to G = GLn as in
Example 11.2.4(4), i.e.

R = {ei − ej | 1 ≤ i, j ≤ n, i 6= j}.

Then
S = {e1 − e2, e2 − e3, . . . , en−1 − en}

is a base for R. (Recall that V is the Q-space spanned by R, which is the
hyperplane x1 + x2 + · · ·+ xn = 0 inside Qn.)
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The following fact greatly reduces the possibilities for a root system.

Proposition 11.3.9. Let R be a root system in the Q-vector space V , and
let S be a base for R. Then:

(i) For any two distinct α, β ∈ S, the angle between α and β is either π/2,
2π/3, 3π/4 or 5π/6. Moreover,

(a) If ∠(α, β) = 2π/3, then |α| = |β|;
(b) If ∠(α, β) = 3π/4, then |α|/|β| =

√
2 or 1/

√
2;

(c) If ∠(α, β) = 5π/6, then |α|/|β| =
√
3 or 1/

√
3.

(ii) The root system is completely determined, up to isomorphism, by the
set S of simple roots, the length of each of the simple roots, and the
angles between any two distinct simple roots.

Proof omitted. □

The previous proposition will allow us to associate a diagram to each root
system which encodes the necessary information to recover the root system
completely.

Definition 11.3.10. Let R be a root system in the Q-vector space V , and
let S be a base for R. The Dynkin diagram of R is a graph with vertex set S,
and where the edges can be either single, double or triple edges, depending
on the following rule:

(a) When ∠(α, β) = π/2, there is no edge between α and β;
(b) When ∠(α, β) = 2π/3, there is a single edge between α and β;
(c) When ∠(α, β) = 3π/4, there is a double edge between α and β;
(d) When ∠(α, β) = 5π/6, there is a triple edge between α and β.

Moreover, for each double or triple edge, we put an arrow pointing from the
longest root towards the shortest root.

Remark 11.3.11. The Dynkin diagram of a root system R is a connected
graph if and only if R is an irreducible root system.

It turns out that there are exactly four different reduced root systems of
rank 2.

Proposition 11.3.12. Let R be a root system of rank 2. Then R is one of
the following:
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A1 × A1 Dynkin diagram

A2 Dynkin diagram

B2 Dynkin diagram

G2 Dynkin diagram

Proof omitted. □

We will now describe all irreducible root systems.

Theorem 11.3.13. Let R be an irreducible root system of arbitrary rank.
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Then the Dynkin diagram of R is exactly one of the following.

An

Bn

Cn

Dn

E6, E7, E8

F4

G2

Proof omitted. □

We can now reformulate our main result.

Theorem 11.3.14. Let G be an almost simple linear algebraic group over
an algebraically closed field k. Then up to isogeny, G is uniquely determined
by the field k and the root system R of G (w.r.t. an arbitrary maximal torus
in G). Its type is one of An, Bn, Cn, Dn, E6, E7, E8, F4 or G2.

Proof. Since G is almost simple, the root datum of G is semisimple, re-
duced, and irreducible. The result now follows from Theorem 11.3.6 and
Theorem 11.3.13. □
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