Moufang Quadrangles

A unifying algebraic structure, and some results on exceptional quadrangles

Promotors: Hendrik Van Maldeghem Richard M. Weiss
Generalized Quadrangles

- Abstract structure of points and lines.
Abstract structure of points and lines.
Abstract structure of points and lines.

→ exactly one
Abstract structure of points and lines.

- Exactly one

\[\geq 2 \]

\[\geq 2 \]
Generalized Quadrangles

- Abstract structure of points and lines.

- \(\rightarrow \text{exactly one} \)

- \(\geq 3 \)

- Extra condition: thick generalized quadrangle.
Bipartite graph; the partitions are called **points** and **lines**.

Diameter (max. distance between 2 vertices) $= 4$.
Girth (length of a smallest circuit) $= 8$.

Every vertex of such a graph has valency ≥ 2.

If the valency at every vertex is ≥ 3 \Rightarrow thick generalized quadrangle.
Bipartite graph; the partitions are called **points** and **lines**.

Diameter (max. distance between 2 vertices) $= n$.
Girth (length of a smallest circuit) $= 2n$.

Every vertex of such a graph has valency ≥ 2.

If the valency at every vertex is ≥ 3
\Rightarrow thick generalized n-gon.
Smallest Thick Quadrangle
An automorphism describes a “symmetry” of an object.
An automorphism describes a “symmetry” of an object.
An automorphism describes a “symmetry” of an object.
An **automorphism** describes a “symmetry” of an object.
An automorphism describes a “symmetry” of an object.
An automorphism describes a “symmetry” of an object.
An **automorphism** describes a “symmetry” of an object.
An automorphism describes a “symmetry” of an object.
An automorphism describes a “symmetry” of an object.

All automorphisms together form an automorphism group.
Moufang Quadrangles

An ordinary quadrangle (□️) inside a generalized quadrangle is called an apartment.
Moufang Quadrangles

- An ordinary quadrangle (□) inside a generalized quadrangle is called an apartment.
- A root is half an apartment.

or

“dual”
Moufang Quadrangles

- An ordinary quadrangle (□) inside a generalized quadrangle is called an **apartment**.
- A **root** is half an apartment.
An ordinary quadrangle (□) inside a generalized quadrangle is called an **apartment**.

A **root** is half an apartment.
Moufang Quadrangles

- An ordinary quadrangle (□) inside a generalized quadrangle is called an apartment.
- A root is half an apartment.
Moufang Quadrangles

- An ordinary quadrangle (□) inside a generalized quadrangle is called an apartment.
- A root is half an apartment.
Moufang Quadrangles

- An ordinary quadrangle (□) inside a generalized quadrangle is called an apartment.
- A root is half an apartment.

+ “dual” property

→ Moufang quadrangle
Fix a root, say α.
Fix a root, say α.
Fix a root, say α.

$\rightarrow \text{root group } U_\alpha$
Fix a root, say α.

\rightarrow root group U_α

Fix an apartment, say $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7\}$.
Fix a root, say α.

\rightarrow root group U_α

Fix an apartment, say $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7\}$.

\rightarrow root $(1, 2, 3, 4, 5)$
\rightarrow root $(2, 3, 4, 5, 6)$
\rightarrow root $(3, 4, 5, 6, 7)$
\rightarrow root $(4, 5, 6, 7, 0)$
Fix a root, say α.

\rightarrow root group U_α

Fix an apartment, say $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7\}$.

\rightarrow root $(1, 2, 3, 4, 5) \rightarrow$ group U_1

\rightarrow root $(2, 3, 4, 5, 6) \rightarrow$ group U_2

\rightarrow root $(3, 4, 5, 6, 7) \rightarrow$ group U_3

\rightarrow root $(4, 5, 6, 7, 0) \rightarrow$ group U_4
Consider the root groups U_1, U_2, U_3 and U_4.
Consider the root groups U_1, U_2, U_3 and U_4.

Consider the group $U_+ := \langle U_1, U_2, U_3, U_4 \rangle$.

Theorem. (J. Tits)
The Moufang quadrangle is completely determined by $(U_+, U_1, U_2, U_3, U_4)$.

Corollary. (J. Tits)
The Moufang quadrangle is completely determined by U_1, U_2, U_3 and U_4 and the commutator relations between any two of these groups.
Commutator Relations

Consider the root groups U_1, U_2, U_3 and U_4.
Consider the group $U_+ := \langle U_1, U_2, U_3, U_4 \rangle$.

Theorem. (J. Tits)
The Moufang quadrangle is completely determined by $(U_+, U_1, U_2, U_3, U_4)$.

Corollary. (J. Tits)
The Moufang quadrangle is completely determined by U_1, U_2, U_3 and U_4 and the commutator relations between any two of these groups.
Commutator Relations

Consider the root groups U_1, \ldots, U_n.

Consider the group $U_+ := \langle U_1, \ldots, U_n \rangle$.

Theorem. (J. Tits)

The Moufang n-gon is completely determined by (U_+, U_1, \ldots, U_n).

Corollary. (J. Tits)

The Moufang n-gon is completely determined by U_1, \ldots, U_n and the commutator relations between any two of these groups.
Parametrizing Structures

- Moufang triangles \((n = 3)\)
- Moufang quadrangles \((n = 4)\)
- Moufang hexagons \((n = 6)\)
- Moufang octagons \((n = 8)\)
Moufang triangles ($n = 3$)
→ alternative division rings [R. Moufang, 1933]

Moufang quadrangles ($n = 4$)

Moufang hexagons ($n = 6$)
→ hexagonal systems [J. Tits, late 60’s]

Moufang octagons ($n = 8$)
→ octagonal systems [J. Tits, middle 70’s]
Parametrizing Structures

- **Moufang triangles** \((n = 3)\)
 → alternative division rings [R. Moufang, 1933]

- **Moufang quadrangles** \((n = 4)\)
 → six different classes [J. Tits & R. Weiss, 2002]

- **Moufang hexagons** \((n = 6)\)
 → hexagonal systems [J. Tits, late 60’s]

- **Moufang octagons** \((n = 8)\)
 → octagonal systems [J. Tits, middle 70’s]
Parametrizing Structures

- Moufang triangles \((n = 3)\)
 → alternative division rings [R. Moufang, 1933]

- Moufang quadrangles \((n = 4)\)
 → quadrangular systems [2003]

- Moufang hexagons \((n = 6)\)
 → hexagonal systems [J. Tits, late 60’s]

- Moufang octagons \((n = 8)\)
 → octagonal systems [J. Tits, middle 70’s]
Quadrangular Systems

- abelian group \((V, +)\);
- (non-)abelian group \((W, \Box)\);
- “actions” \(V \cdot W = V\) and \(W \cdot V = W\);
- bi-additive map \(F : V \times V \rightarrow W\);
- bi-additive map \(H : W \times W \rightarrow V\);
- \(\epsilon \in V^*\) such that \(\omega \epsilon = \omega\);
- \(\delta \in W^*\) such that \(\nu \delta = \nu\);
- map on \(V^* : \nu \mapsto \nu^{-1} : \omega \nu \cdot \nu^{-1} = \omega\);
- map on \(W^* : \omega \mapsto \kappa(\omega) : \nu(\Box \omega) \cdot \kappa(\omega) = -\nu\);
- +16 other axioms.
Quadrangular Systems: Axioms

\(w \epsilon = w.\)

\(v \delta = v.\)

\((w_1 \boxplus w_2)v = w_1 v \boxplus w_2 v.\)

\((v_1 + v_2)w = v_1 w + v_2 w.\)

\(w(-\epsilon)v = w(-v).\)

\(v(w(-\epsilon)) = vw.\)

\(\text{Im}(F) \subseteq \text{Rad}(H).\)

\([w_1, w_2 v] \boxplus = F(H(w_2, w_1), v).\)

\(\delta \in \text{Rad}(H).\)

If \(\text{Rad}(F) \neq 0, \) then \(\epsilon \in \text{Rad}(F).\)

\(w(v_1 + v_2) = wv_1 \boxplus wv_2 \boxplus F(v_2 w, v_1).\)

\(v(w_1 \boxplus w_2) = vw_1 + vw_2 + H(w_2, w_1 v).\)

\((v^{-1})^{-1} = v.\)

\(\kappa(\boxplus \kappa(\boxplus w)) = w(-\epsilon).\)

\(wvv^{-1} = w.\)

\(v^{-1}(vv) = -v(\boxplus v).\)

\(F(v_1^{-1}, \overline{v_2})v_1 = F(v_1, v_2).\)

\(v \kappa(w)(\boxplus w) = -v.\)

\(w(v \kappa(w)) = \kappa(w)v.\)

\(H(\kappa(w_1), w_2)w_1 = H(w_1, w_2).\)
Commutator Relations

\[U_1 \cong U_3 \cong (W, \Box) ; \]
\[U_2 \cong U_4 \cong (V, +) ; \]
Commutator Relations

\[U_1 \cong U_3 \cong (W, \Box) ; \]
\[U_2 \cong U_4 \cong (V, +) ; \]
\[[U_1, U_2] = [U_2, U_3] = [U_3, U_4] = 1 ; \]
\[[x_1(w_1), x_3(w_2)^{-1}] = x_2(H(w_1, w_2)) ; \]
\[[x_2(v_1), x_4(v_2)^{-1}] = x_3(F(v_1, v_2)) ; \]
\[[x_1(w), x_4(v)^{-1}] = x_2(vw)x_3(wv) . \]
More Definitions

- $\Omega = (V, W, F, H, \epsilon, \delta)$: quadrangular system.
- Ω is **indifferent** if $F = 0$ and $H = 0$;
- Ω is **reduced** if $F \neq 0$ and $H = 0$;
- Ω is **wide** if $F \neq 0$ and $H \neq 0$.
More Definitions

- $\Omega = (V, W, F, H, \epsilon, \delta)$: quadrangular system.
- Ω is **indifferent** if $F = 0$ and $H = 0$; Ω is **reduced** if $F \neq 0$ and $H = 0$; Ω is **wide** if $F \neq 0$ and $H \neq 0$.
- Every **wide** quadrangular system is the **extension** of a **reduced** one.
More Definitions

- \(\Omega = (V, W, F, H, \epsilon, \delta) \): quadrangular system.
- \(\Omega \) is **indifferent** if \(F = 0 \) and \(H = 0 \); \(\Omega \) is **reduced** if \(F \neq 0 \) and \(H = 0 \); \(\Omega \) is **wide** if \(F \neq 0 \) and \(H \neq 0 \).
- Every **wide** quadrangular system is the **extension** of a **reduced** one.
- Let \(\Omega \) be reduced. Then \(\Omega \) is **normal**
 \(\iff \forall w_1, w_2, \ldots, w_i \in W : \exists w \in W : \epsilon w_1 w_2 \ldots w_i = \epsilon w. \)
Classification

- **Ω indifferent**
 \[\Rightarrow \Omega \cong \Omega_D(K, K_0, L_0) : \text{indifferent type.} \]

- **Ω reduced but not normal**
 \[\Rightarrow \Omega \cong \Omega_I(K, K_0, \sigma) : \text{proper involutory type.} \]

- **Ω reduced and normal**
 \[\Rightarrow \Omega \cong \Omega_Q(K, V_0, q) : \text{quadratic form type.} \]

- **Ω extension of a proper Ω_I(K, K_0, \sigma)**
 \[\Rightarrow \Omega \cong \Omega_P(K, K_0, \sigma, V_0, p) : \text{pseudo-quadratic form type.} \]
Classification

- Ω extension of an $\Omega_Q(K, V_0, q)$
 - $\text{Rad}(F) \neq 0$
 - $\Rightarrow \Omega \cong \Omega_F(K, V_0, q)$: exceptional type F_4.
 - $\text{Rad}(F) = 0$
 - $\Rightarrow d := \dim_K V_0 \in \{2, 4, 6, 8, 12\}$
 - $d \in \{2, 4\}$: pseudo-quadratic form type.
 - $d = 6$: exceptional type E_6.
 - $d = 8$: exceptional type E_7.
 - $d = 12$: exceptional type E_8.
Automorphisms

\[G \] = full automorphism group.

\[G_y \] = subgroup of \[G \] generated by all root groups.

\[G_y \] is a normal subgroup of \[G \], which is simple (except for three tiny cases).

Interesting problem: Examine \[G = G_y \].
$G := \text{full automorphism group.}$
Automorphisms

- $G := \text{full automorphism group.}$

- $G^\dagger := \text{subgroup of } G \text{ generated by all root groups.}$
Automorphisms

- \(G := \) full automorphism group.

- \(G^\dagger := \) subgroup of \(G \) generated by all root groups.

- \(G^\dagger \) is a normal subgroup of \(G \), which is simple (except for three tiny cases).
Automorphisms

- $G :=$ full automorphism group.

- $G^\dagger :=$ subgroup of G generated by all root groups.

- G^\dagger is a **normal** subgroup of G, which is **simple** (except for three tiny cases).

- Interesting problem: Examine G/G^\dagger.
Completely solved in Tits-Weiss for the cases $n = 3$ and $n = 8$.
\(G/G^{\dagger} \) - Problem

- Completely solved in Tits-Weiss for the cases \(n = 3 \) and \(n = 8 \).

- Solved in Tits-Weiss for the cases \(n = 4 \) and \(n = 6 \), except:
 - Exceptional quadrangles of type \(E_6, E_7, E_8 \).
 - Exceptional quadrangles of type \(F_4 \).
 - Exceptional hexagons of type \(E_8 \).
Completely solved in Tits-Weiss for the cases $n = 3$ and $n = 8$.

Solved in Tits-Weiss for the cases $n = 4$ and $n = 6$, except:

- Exceptional quadrangles of type E_6, E_7, E_8.
- Exceptional quadrangles of type F_4.
- Exceptional hexagons of type E_8.
Quadrangles of Type F_4

\[[x_1(x, y, t), x_4(u, v, s)] = x_2(U, V, S) \cdot x_3(X, Y, T) \text{ where} \]

\[U = \alpha \cdot (\bar{x}v + \beta y\bar{v}) + tu; \]
\[V = xu + \beta y\bar{u} + tv; \]
\[S = \hat{q}(x, y, t)s + \alpha \cdot (x\bar{y}u^2 + \bar{x}y\bar{u}^2 + \alpha \cdot (xy\bar{v}^2 + x\bar{y}v^2)); \]
\[X = y\bar{u}^2 + \alpha \bar{y}v^2 + sx; \]
\[Y = \beta^{-2} \cdot (xu^2 + \alpha \bar{x}v^2) + sy; \]
\[T = q(u, v, s)t + \alpha \cdot (\beta^{-1} \cdot (xu\bar{v} + \bar{x}u\bar{v}) + y\bar{u}d + \bar{y}uv). \]
Quadrangles of Type F_4

\[
[x_1(x, y, t), x_4(u, v, s)] = x_2(U, V, S) \cdot x_3(X, Y, T) \text{ where}
\]

\[
U = \alpha \cdot (\bar{x}v + \beta y\bar{v}) + tu;
\]

\[
V = xu + \beta y\bar{u} + tv;
\]

\[
S = \hat{q}(x, y, t)s + \alpha \cdot (x\bar{y}u^2 + \bar{x}y\bar{u}^2 + \alpha \cdot (xy\bar{v}^2 + \bar{x}y\bar{v}^2));
\]

\[
X = y\bar{u}^2 + \alpha \bar{y}v^2 + sx;
\]

\[
Y = \beta^{-2} \cdot (xu^2 + \alpha \bar{x}v^2) + sy;
\]

\[
T = q(u, v, s)t + \alpha \cdot (\beta^{-1} \cdot (xu\bar{v} + \bar{x}u\bar{v}) + y\bar{u}\bar{v} + \bar{y}uv).
\]

\[
[x_1(w), x_4(v)] = x_2(vw) \cdot x_3(wv).
\]
<table>
<thead>
<tr>
<th>Geometry</th>
<th>Algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moufang quadrangle Γ</td>
<td>Quadrangular system Ω</td>
</tr>
<tr>
<td>of type F_4</td>
<td>of type F_4</td>
</tr>
</tbody>
</table>

$G_y : \cong \text{Aut}(X)$

$G_{h_c, \hat{z}} : \cong \text{SelfSim}(y)$

$G_{h_c, \hat{z}} : \cong G_{y}$

$X : \cong \text{root groups}$
<table>
<thead>
<tr>
<th>Geometry</th>
<th>Algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moufang quadrangle Γ</td>
<td>Quadrangular system Ω</td>
</tr>
<tr>
<td>of type F_4</td>
<td>of type F_4</td>
</tr>
<tr>
<td>automorphism of Γ</td>
<td>self-similarity of Ω</td>
</tr>
<tr>
<td>Geometry</td>
<td>Algebra</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Moufang quadrangle Γ of type F_4</td>
<td>Quadrangular system Ω of type F_4</td>
</tr>
<tr>
<td>automorphism of Γ</td>
<td>self-similarity of Ω</td>
</tr>
<tr>
<td>$G := \text{Aut}(\Gamma)$</td>
<td>$X := \text{SelfSim}(\Omega)$</td>
</tr>
<tr>
<td>Geometry</td>
<td>Algebra</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Moufang quadrangle Γ of type F_4</td>
<td>Quadrangular system Ω of type F_4</td>
</tr>
<tr>
<td>automorphism of Γ</td>
<td>self-similarity of Ω</td>
</tr>
<tr>
<td>$G := \text{Aut}(\Gamma)$</td>
<td>$X := \text{SelfSim}(\Omega)$</td>
</tr>
<tr>
<td>$G^\dagger := \langle \text{root groups} \rangle$</td>
<td>$X^\dagger := \langle \chi_c, \hat{\chi}_z \rangle$</td>
</tr>
</tbody>
</table>

where $\chi_c, \hat{\chi}_z$ are self-similarities induced by reflections in quadratic spaces.
<table>
<thead>
<tr>
<th>Geometry</th>
<th>Algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moufang quadrangle Γ of type F_4</td>
<td>Quadrangular system Ω of type F_4</td>
</tr>
<tr>
<td>automorphism of Γ</td>
<td>self-similarity of Ω</td>
</tr>
<tr>
<td>$G := \text{Aut}(\Gamma)$</td>
<td>$X := \text{SelfSim}(\Omega)$</td>
</tr>
<tr>
<td>$G^\dagger := \langle \text{root groups} \rangle$</td>
<td>$X^\dagger := \langle \chi_c, \hat{\chi}_z \rangle$</td>
</tr>
</tbody>
</table>

where $\chi_c, \hat{\chi}_z$ are self-similarities induced by reflections in quadratic spaces

$$G/G^\dagger \cong X/X^\dagger$$
Construction of Ω is based on two quadratic spaces (K, V, q) and (L, W, \hat{q}), with $L < K$.
Construction of Ω is based on two quadratic spaces (K, V, q) and (L, W, \hat{q}), with $L < K$.

$X_\ell := \{ \text{linear self-similarities} \}$.
Construction of Ω is based on two quadratic spaces (K, V, q) and (L, W, \hat{q}), with $L < K$.

- $X_\ell := \{ \text{linear self-similarities} \}$.
- $X/X_\ell \cong A \leq \text{Aut}(K, L)$.
Construction of Ω is based on two quadratic spaces (K, V, q) and (L, W, \hat{q}), with $L < K$.

$X_\ell := \{ \text{linear self-similarities} \}$.

$X/X_\ell \cong A \leq \text{Aut}(K, L)$.

$X_\ell \cong X^\dagger$

- Determination of $G(q) := \text{group of multipliers of similitudes of } q$.
- Cartan-Dieudonné-type theorem for q.
- Restriction of the parameters of the self-similarity.
\[G/G^\dagger \cong X/X^\dagger. \]
\[X^\dagger \cong X_\ell. \]
\[X/X_\ell \cong A \leq \text{Aut}(K, L). \]
\[G / G^\dagger \cong X / X^\dagger. \]
\[X^\dagger \cong X_\ell. \]
\[X / X_\ell \cong A \leq \text{Aut}(K, L). \]

\[
\implies G / G^\dagger \cong A \leq \text{Aut}(K, L)
\]
To do ...

Try to use similar methods to solve the $G = G_y$-problem for the exceptional quadrangles of type E_6, E_7 and E_8.

Generalize the concept of algebraic groups to pairs of fields, to include the exceptional quadrangles of type F_4.

Try to find a deeper connection with Jordan algebras.

Applications?
Try to use similar methods to solve the G/G^\dagger-problem for the exceptional quadrangles of type E_6, E_7 and E_8.
To do ...

- Try to use similar methods to solve the G/G^\dagger-problem for the exceptional quadrangles of type E_6, E_7 and E_8.
- Generalize the concept of algebraic groups to pairs of fields, to include the exceptional quadrangles of type F_4.

Applications?
To do ...

- Try to use similar methods to solve the G/G^\dagger-problem for the exceptional quadrangles of type E_6, E_7 and E_8.
- Generalize the concept of algebraic groups to pairs of fields, to include the exceptional quadrangles of type F_4.
- Try to find a deeper connection with Jordan algebras.
Try to use similar methods to solve the G/G^\dagger-problem for the exceptional quadrangles of type E_6, E_7 and E_8.

Generalize the concept of algebraic groups to pairs of fields, to include the exceptional quadrangles of type F_4.

Try to find a deeper connection with Jordan algebras.

Applications?
To do ...

- Try to use similar methods to solve the G/G^\dagger-problem for the exceptional quadrangles of type E_6, E_7 and E_8.
- Generalize the concept of algebraic groups to pairs of fields, to include the exceptional quadrangles of type F_4.
- Try to find a deeper connection with Jordan algebras.
- Applications?