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Preface

The main subject of this thesis is the study of Moufang sets. They were
introduced some years ago by J. Tits as tools to classify twin buildings—this
work has been successfully completed by B. Mühlherr (and in Mühlherr’s
approach, Moufang sets play indeed a central role).

In the first chapter some necessary notions will be defined; we start with
generalized polygons. The specific geometries in which we work can always
be seen (to some extent) as (arising from) a generalized polygon. The aim
of this thesis is to get some knowledge about the automorphism groups of
the geometries we work with. For this, one notion is particularly necessary:
the Moufang condition of a generalized polygon, this obliges the generalized
polygon in which we work to be ’very symmetric’. J. Tits introduced the
Moufang condition in the appendix of [32]. The last notion we get acquainted
with in this chapter is the Moufang set: Moufang sets are the Moufang
buildings of rank 1. They are the axiomatization of the permutation groups
generated by two opposite root groups (belonging to opposite roots R0 and
R∞) in a Moufang building of rank at least 2, acting on the set of roots R
such that R ∪R0 or R ∪R∞ form an apartment.

The second chapter is dedicated to a characterization of Moufang quad-
rangles. Generalized quadrangles were introduced by J. Tits in the ap-
pendix of [29]. The half Moufang condition was introduced by J. A. Thas,
S. E. Payne and H. Van Maldeghem in [24], where the equivalence with the
Moufang condition in the finite case was shown. Later on, R. Weiss and
H. Van Maldeghem defined the k-Moufang condition for generalized poly-
gons [38] and J. A. Thas, S. E. Payne and H. Van Maldeghem proved in [25]
that the 3-Moufang property is equivalent to the Moufang condition for finite
generalized quadrangles.

Not so long ago, K. Tent [18] proved in general that the half Moufang
condition is equivalent to the Moufang condition. Next, we found that, again
in general, the 3-Moufang condition is equivalent to the Moufang condition
(for generalized quadrangles). In this chapter we will further weaken the
Moufang condition. We will introduce a condition that is weaker than both
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the half Moufang condition and the 3-Moufang condition, and therefore we
will call it the half 3-Moufang condition. Also this condition will be equivalent
to the Moufang condition. This result is proved using Moufang sets in a non-
trivial way.

The third chapter shows that if a spherical BN -pair is split, the splitting
has to be unique. The notion of a BN -pair is introduced by J. Tits in [32].
A BN -pair tells us there is a unique spherical building Ω where the group B
is associated with a unique maximal flag, or chamber, C of Ω, and the group
N is associated with a unique appartment of Ω. The split conditon now
immediately translates into the property that there exist a nilpotent group
U which is normal in B such that U acts transitively on the set of chambers
of Ω opposite C. Hence it makes sense to call U a transitive normal nilpotent
subgroup of B.

Recently it was shown that a split BN -pair of spherical and irreducible
rank 2 is essentially equivalent to the so-called Moufang condition for the
associated generalized polygon (see [20], [22], [23]; the finite case was already
treated back in the 1970s in [5], [6]). The uniqueness of such a splitting says
that if (G,B,N) defines a generalized n-gon Ω for n > 2, and if there is
a normal nilpotent subgroup U of B such that B = U(B ∩ N), then Ω is
a Moufang polygon and G contains all the appropriate root groups, i.e., U
necessarily coincides with the standard unipotent subgroup U+ of B, which
is a product of root groups. We want to show this uniqueness result for all
Moufang sets arising from higher rank Moufang buildings as permutation
groups generated by opposite root groups, and use this result to prove that
the splittings of all split BN -pairs of higher rank are unique. In addition we
show the uniqueness result also for some well known Moufang sets arising
from diagram automorphisms of some rank two buildings, more specific for
the Suzuki groups and the Ree groups in characteristic 3.

In the last chapter we investigate the Ree Geometry and its automorphism
group. Every algebraic group of relative rank one gives rise to a Moufang
line, but those with root groups of nilpotency class two also give rise to an
additional geometric structure on that Moufang line, according to J. Tits
[33], and we will call the resulting geometry a Moufang geometry of rank 1.
J. Tits then asked whether this additional structure is rich enough to recover
the algebraic group. More precisely, is the automorphism group of this geo-
metric structure contained in the automorphism group of the corresponding
algebraic group?

In this chapter we consider the Moufang lines defined by the Ree groups.
Here, the root groups have nilpotency class 3, and this situation does not
occur with algebraic groups. In fact, these groups were until recently the only



known split BN-pairs of rank 1 whose root groups exceeded nilpotency class
2; in [12], a second class of such examples is discovered (with nilpotency class
3 again). We will show that the Moufang geometry of rank one constructed
this way is rich enough to recover the group and the rank 2 geometry from
which it was created.
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Chapter 1

Preliminaries

1.1 Geometries

A geometry (of rank 2) is a triple Γ = (P ,L, I) where P ,L are disjoint non-
empty sets, I ⊆ P × L is a relation, called the incidence relation such that
every element of P ∪ L is incident with at least one element of P ∪ L. The
elements of P are called points, the elements of L are lines and the elements
of I are (maximal) flags in Γ. A geometry Γ is called thick if all point rows
and all line pencils have cardinalities at least 3. An element which is incident
with at least three elements is sometimes called thick itself.

An ordinary polygon is a geometry consisting of n different points x2i

and n different lines x2i+1, i ∈ {0..n − 1}, such that x2i−1Ix2iIx2i+1 for
i ∈ {1..n − 1} and x2n−1Ix0Ix1.

1.2 Generalized Polygons

Let n ≥ 1 be a natural number. A generalized n-gon is a geometry Γ =
(P ,L, I) such that the following two axioms are satisfied

GP1 Γ contains no ordinary k-gon (as a subgeometry) for 2 ≤ k < n.

GP2 Any two elements x, y ∈ P ∪ L are contained in some ordinary n-gon
in Γ, which we call an apartment.

GP3 There exists an ordinary (n + 1)-gon (as a subgeometry) in Γ.

If only the first two conditions are satisfied, we call this geometry a weak
generalized polygon. It turns out that the third axiom is equivalent with
the generalized polygon being thick. A finite generalized n-gon is said to
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2 1. Preliminaries

have order (s, t) if every line is incident with s + 1 points and every point is
incident with t + 1 lines.

All weak polygons can be described in terms of (thick) generalized poly-
gons. For this, we first need to define the multiple mΓ of a geometry
Γ = (P ,L, I) for any natural number m ≥ 1, so we define a graph on the set

W = P ∪ L ∪ (I× {1, 2, . . . ,m − 1})

by specifying adjacency ∗ as follows:

p ∗ (p, L, 1) ∗ (p, L, 2) ∗ . . . ∗ (p, L,m − 1) ∗ L

for every incident pair (p, L) ∈ I ⊆ P ×L. The graph (W, ∗) is bipartite and
hence determines a geometry mΓ up to duality; by insisting that the points
of Γ should also be points of mΓ, the geometry mΓ is determined uniquely.

Theorem 1.2.1 (Tits [31]). Let Γ = (P ,L, I) be a weak generalized n-gon
with n ≥ 3. Then we have precisely one of the following cases:

(i) Γ is an ordinary n-gon.

(ii) Γ is obtained from an ordinary n-gon x0Ix1I . . . Ix2n = x0 by inserting
a non-zero number of (mutually disjoint) paths of length n from x0 to
xn. Then x0 and xn are the only thick elements of Γ, and Γ does not
have an order (see [36]).

(iii) There exists a divisor d of n, with d < n and a (thick) generalized
n
d -gon Γ′ (with d

n possibly equal to 2, but not to 1) such that Γ ≡ dΓ′

or Γ ≡ dΓ′D, the dual of dΓ′. There is also a bijection from the set of
points and lines of Γ′ onto the set of thick elements of Γ which maps
elements at distance i onto elements at distance id.

In a generalized polygon Γ = (P ,L, I) a flag is an incident point-line
pair. A path of length m from x to y, with x and y in P ∪ L, is a sequence
(x = x0, x1, . . . , xm = y) with xi−1Ixi for i ∈ {1, . . . ,m}. The distance
between two elements x and y is the length of the shortest path between
those two elements. We denote this by d(x, y). If the distance between
two elements is maximal (i.e. n in a generalized n-gon), these elements are
called opposite. If the distance between two elements is 2, we are dealing
with collinear points resp. concurrent lines. We denote collinearity with the
symbol ∼.

If two elements xi and xj are not opposite, there exists a unique element
x incident with xj such that d(xi, x) < d(xi, xj). This element x is called the
projection of xi onto xj. We denote this by projxj

(xi).
We will now briefly explain the geometric structure of some generalized

n-gons.
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Generalized digons A generalized 2-gon is a geometry in which every
point is incident with every line.

If we, for instance, fix one line L in a projective 3-space V , we can
define S = (P ,L, I) where P consists of the points on L, L equals the
set of planes through L and incidence is natural, S is then a generalized
digon. This example shows that generalized digons appear in abundance in
real—mathematical—life.

Generalized triangles Generalized triangles are exactly projective planes:
every two points are incident with exactly one line, and every two lines are in-
cident with exactly one point. There also exist four points, of which no three
points are incident with the same line. To find out more about projective
planes, we refer to [9].

The best known projective planes are those defined over a (skew) field K;
the Desarguesian planes. This is one way of seeing this geometry: The points
are of three types: the pairs (x, y) ∈ K × K, the elements (m), m ∈ K and a
symbol (∞). The lines are dually also of three types: the pairs [m, k] ∈ K×K,
the elements [x],x ∈ K and the symbol [∞]. Incidence is defined as follows;
the point (∞) is incident with [∞] and [x], for all x ∈ K; the point (m),
m ∈ K, is incident with [∞] and [m, k] for all k ∈ K; the point (x, y)
x, y ∈ K is incident with [x] and with [m, k] if and only if mx + y = k.

Generalized quadrangles One of the most complete references on finite
generalized quadrangles is [13]. In that book a generalized quadrangle is
defined as a geometry S = (P ,L, I) satisfying the following axioms:

GQ1 Each point is incident with 1 + t lines (t ≥ 1) and two distinct points
are incident with at most one line.

GQ2 Each line is incident with 1 + s points (s ≥ 1) and two distinct lines
are incident with at most one point.

GQ3 For every non-incident point-line pair (p, L), there is a unique point q
and a unique line M such that pIMIqIL.

The last axiom will sometimes be referred to as the Main Axiom for gener-
alized quadrangles. Note that these axioms are equivalent with the previous
definition, as is shown in [36]

The classical generalized quadrangles arise from pseudo-quadratic forms,
in particular quadrics, Hermitian varieties and symplectic polarities: the
points and lines of the quadrics with Witt-index 2 form generalized quad-
rangles. When defined over a finite field GF (q) the hyperbolic quadric
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Q+(3, q) in PG(3, q), the parabolic quadric Q(4, q) in PG(4, q) and the el-
liptic quadric Q−(5, q) in PG(5, q) define finite generalized quadrangles with
order (q, 1),(q, q) and (q, q2) respectively.

The points and lines of the Hermitian varieties with Witt-index 2 form
generalized quadrangles. When defined over a finite field GF (q2), H(3, q2)
and H(4, q2) form generalized quadrangles with resp. order (q2, q) and (q2, q3).

A symplectic polarity τ over PG(3, K) gives rise to a generalized quad-
rangle W (K) (of order (q, q) in the finite case) by considering the points of
the projective space along with the totally isotropic lines of PG(3, K).

Generalized hexagons There are two well-known classes of classical gen-
eralized hexagons, they aren’t classical from the point of view of group theory
(no classical group is naturally associated with a generalized hexagon) but
they live naturally on classical objects like quadrics (in particular Q+(7, K))
and there is a great similarity between them and symplectic quadrangles, so
—geometrically seen— these are classical hexagons.

We start with describing the D4-geometry arising from Q+(7, K), the
quadric in PG(7, K) with Witt-index 4. This quadric has as characteristic
property that every plane contained in it is itself contained in exactly 2
generators i.e. 3-spaces lying completely in the quadric. Those 3-spaces
can be subdivided in two subsets in the following way: they belong to the
same subset, if and only if they have an odd-dimensional intersection. We can
denote these subsets G1 and G2. The D4-geometry Ω(K) attached to Q+(7, K)
is defined as follows; there are four different types of elements. The set P(0)

of 0-points is the set of points of Q+(7, K) , the lines are the lines of Q+(7, K)
and we denote this set by L, in P (1) lie the 1-points which are the elements
of G1 and P (2) consists of the elements of G2 called 2-points. Incidence is
symmetrized containment for P (i) and L, also for 0-points and j-points, j
being 1 or 2. A 1-point is incident with a 2-point if the corresponding 3-
spaces meet in a plane of Q+(7, K) . The key property of this geometry is
that every permutation of the set {P (0),P (1),P (2)} defines a geometry which
is isomorphic to Ω(K).

A triality of Ω(K) is a map

θ : L → L, P (0) → P (1), P (1) → P (2), P (2) → P (0)

preserving incidence in Ω(K) and such that θ3 is the identity. Absolute i-
points are i-points which are incident with their image under θ, absolute
lines are lines which are fixed under θ. The geometry Γ(i) with point set P (i)

abs

the set of absolute i-points, with line set Labs the set of absolute lines and
with natural incidence gives rise to a generalized hexagon provided that there



1.2. Generalized Polygons 5

is at least one absolute i-point, for some i ∈ {0, 1, 2}, that every absolute
i-point is incident with at least 2 absolute lines and that there exists a cycle
(L0, L1, . . . , Ld = L0), d > 2, of absolute lines with Li concurrent with Li+1.

For every field K there exists a triality that produces a split Cayley gener-
alized hexagon H(K). the reason for that name is that this hexagon can also
be constructed using a split Cayley algebra over K, see for instance [15],[16].
If the triality uses a field automorphism σ of order 3, this triality produces
a twisted triality generalized hexagon. The twisted triality hexagon has an
ideal subhexagon isomorphic to H(K). For the explicit coordinates of these
classical hexagons embedded in a projective space, we refer to the appendix.

Generalized octagons There is one known class of generalized octagons,
namely the Ree-Tits octagons. Normally the construction of this geometry
is given using the (B,N)-pair in the Chevalley Groups of type 2F4 (the
Ree groups of characteristic 2). It is however possible to construct such an
octagon using a polarity over the building F4 (see [30] and [36]). Also here
the field K over which F4 is defined has characteristic 2. If K is a perfect
field, an explicit embedding in PG(24, K) now exists due to Coolsaet [1]

Restriction on the parameters for finite n-gons The theorem of Feit
and Higman [4] implies that finite generalized n-gons exist only for a few
values of n. The idea of the proof is to calculate the multiplicity of a certain
eigenvalue of the matrix M = AtA, where A is an incidence matrix of the
finite n-gon, and to require that this must be a positive integer.

Theorem 1.2.2 (Feit and Higman [4]). If S = (P ,B, I) is a finite n-gon
of order (s, t) s, t ̸= 1 then only the following n-gons are possible

• n = 2

• n = 3 and s = t

• n = 4

• n = 6 and st is a square

• n = 8 and 2st is a square

• n = 12 and either s = 1 or t = 1
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1.3 Moufang Generalized Polygons

Let Γ = (P ,L, I) and Γ′ = (P ′,L′, I) be two geometries. An isomorphism
or a collineation of Γ onto Γ′ is a pair of bijections α : P → P ′, β : L → L′

preserving incidence i.e. pαILβ if and only if pIL for p ∈ P and L ∈ L.
Let γ = (x1, . . . , xn−1) be a panel, i.e. a path of length n − 2 of the

generalized n-gon Γ, . The group G of collineations of Γ fixing every element
incident with at least one element of γ — we call such collineations γ-elations
— acts freely on the set of apartments through γ. If this action is transitive,
we say that γ is a Moufang path. If all paths of length n − 2 are Moufang,
we speak of a Moufang generalized polygon.

Restrictions on existence of Moufang n-gons The Moufang general-
ized polygons have been classified in [35]. This paragraph is very much based
on chapter 16 of that book. Every Moufang generalized polygon Γ determines
an (n + 1)-tuple (U[1,n], U1, U2, . . . , Un), Ui are root groups acting on Γ while
U[1,n] is the group generated by these root groups. They all satisfy certain
axioms.

• (M1) [Ui, Uj] ≤ U[i+1,j−1] for 1 ≤ i < j ≤ n.

• (M2) The product map from U1 × U2 × · · ·× Un to U[1,n] is bijective.

• (M3) There exists a subgroup Ũ0 of Aut(U[1,n−1]) such that for each

an ∈ U∗
n there exists µ(an) ∈ Ũ∗

0 ãnŨ∗
0 such that Uµ(an)

j = Un−j for

1 ≤ j ≤ n − 1 and, for some en ∈ U∗
n, Ũµ(en)

j = Ũn−j for j = 0 and

j = n. For an ∈ Un, ãn denotes the image of an in Ũn, the subgroup of
Aut(U[1,n−1]) induced by Un by conjugation.

• (M4) There exists a subgroup Ũn+1 of Aut(U[2,n]) such that for each

a1 ∈ U∗
1 there exists µ(a1) ∈ Ũ∗

n+1ã1Ũ∗
n+1 such that Uµ(a1)

j = Un+2−j

for 2 ≤ j ≤ n and, for some e1 ∈ U∗
1 , Ũµ(e1)

j = Ũn+2−j for j = 1 and

j = n + 1. For a1 ∈ U1, ã1 denotes the image of a1 in Ũ1, the subgroup
of Aut(U[2,n]) induced by U1 by conjugation.

To classify the Moufang generalized polygons, all possible structures for
(U[1,n], U1, U2, . . . , Un) satisfying these axioms are examined for every possible
n.

Generalized triangles Let A be an alternative division ring. Let U1, U2, U3

be three groups all parametrized by the additive group of A. Let T (A)
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denote the graph defined by the relations

[x1(t), x3(u)] = x2(tu)

for all t, u ∈ A. These are the Moufang generalized triangles.

Generalized quadrangles There are 6 different classes of generalized quad-
rangles; the quadrangles of involutory type, those of quadratic form
type, the quadrangles of indifferent type, those of pseudoquadratic form
type, the exceptional quadrangles of type E6, E7, E8 and the quad-
rangles of type F4. We will describe them one by one, the algebraic
structures over which these quadrangles are defined will be described
in Chapter 3.

quadrangles of involutory type Let (K,K0,σ) be an involutory set.
Let U1 and U3 be groups parametrized by the group K0 and let U2

and U4 be groups parametrized by the additive group of K. Let
QI(K,K0,σ) denote the graph defined by the relations

[x2(a), x4(b)
−1] = x3(a

σb + bσa) and

[x1(t), x4(a)−1] = x2(ta)x3(a
σta)

for all t ∈ K0 and a, b ∈ K.

quadrangles of quadratic form type Let (K,L0, q) be an anisotropic
quadratic space with L0 = 0 and let f denote the bilinear form
associated with q. Let U1 and U3 be groups parametrized by the
additive group of K and let U2 and U4 be groups parametrized by
L0. Let QQ(K,L0, q) denote the graph defined by the relations

[x2(a), x4(b)
−1] = x3(f(a, b)) and

[x1(t), x4(a)−1] = x2(ta)x3(tq(a))

for all t ∈ K and a, b ∈ L0 .

quadrangles of indifferent type Let (K,K0, L0) be an indifferent
set. Let U1 and U3 be groups parametrized by K0. Let U2 and
U4 be groups parametrized by L0. Let QD(K,K0, L0) denote the
graph defined by the relations

[x1(t), x4(a)] = x2(t
2a)x3(ta)

for all t ∈ K0 and a ∈ L0.



8 1. Preliminaries

quadrangles of pseudoquadratic form type Let (K,K0,σ, L0, q) be
an anisotropic pseudo-quadratic space, let f denote the skew-
hermitian form associated with q and let T be the group

T = {(a, t) ∈ L0 × K | q(a) − t ∈ K0}

with
(a, t) · (b, u) = (a + b, t + u + f(b, a).

Let U1 and U3 be groups parametrized by T and let U2 and
U4 be groups parametrized by the additive group of K. Let
QP(K,K0,σ, L0, q) denote the graph defined by the relations

[x1(a, t), x3(b, u)−1] = x2(f(a, b)),

[x2(v), x4(w)−1] = x3(0, v
σw + wσv) and

[x1(a, t), x4(v)−1] = x2(tv)x3(av, vσtv)

for all (a, t), (b, u) ∈ T and all v, w ∈ K.

quadrangles of type E6, E7 and E8. Let (K,L0, q) be a quadratic
space of type E6, E7 or E8, let f denote the bilinear form asso-
ciated with q. Choose an element ϵ in L0, replace q by q/q(ϵ)
and choose a norm splitting map T of q. Let X0 and the map
(a, v) /→ av from X0 × L0 to X0 be such that for some b ∈ X∗

0

b · T (v) = (b · T (ϵ)) · v

for all v ∈ L0. Let h,θ, g and φ be the maps given in ([35], chapter
13), h from X0×X0 to L0, θ from X0×L0 to L0, g from X0×X0 to
K and φ from X0 ×L0 to K. Let S be the group with underlying
set X0 × K and multiplication given by

(a, s) · (b, t) = (a + b, s + t + g(a, b))

for all a, b ∈ x0 and all s, t ∈ K. Let U1 and U3 be groups
parametrized by S and let U2 an U4 be groups parametrized by
L0. Let Qϵ(K,L0, q) denote the graph defined by the relations

[x1(a, t), x3(b, s)
−1] = x2(h(a, b))

[x2(u), x4(v)−1] = x3(0, f(u, v)) and

[x1(a, t), x4(v)−1] = x2(θ(a, v) + tv)x3(av, tq(v) + φ(a, v)))

for all (a, t), (b, s) ∈ S and all u, v ∈ L0. These quadrangles are
independent of the choice of the element ϵ and the norm splitting
map T .
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quadrangles of type F4 Let (K,L0, q) be a quadratic space of type
F4 and let R0 = Rad(q). Choose an element ρ ∈ R∗

0, replace q
by q/q(ρ) and let F = q(R0). Choose a complement S0 of R0 in
L0 and a norm splitting (E, {v1, v2}) of the restriction of q to S0

with constants s1, s2 such that s1s2 ∈ F . Let W0 = E ⊕ E and
let q1 denote the restriction of q to S0. We coordinatize W0 with
respect to the ordered basis (v1, v2) so that

q1(u, v) = s1N(u) + s2N(v)

for all (u, v) ∈ X0 and then identify L0 with W0 ⊕ F as in ([35],
chapter 14) so that q(b, s) = q1(b) + s for all (b, s) ∈ w0 ⊕ F . Let
D = E2F , let X0 = D⊕D, let q2 be the quadratic form on X0 as
a vector space over F given by

q2(x, y) = s−1
1 s2N(x) + s−3

1 s2N(y)

for all (x.y) ∈ X0, let q̂ be the quadratic be the quadratic form on
X0 ⊕ K given by

q̂(a, t) = q2(a) + t2

for all (a, t) ∈ X0 ⊕K. Let f1 and f2 denote the bilinear forms on
W0 and X0 associated with q1 and q2. Let Θ and Υ be the maps
from X0 × W0 to K and to F given by

Θ((x, y), (u, v)) = (α(x̄v + βy(̄v)), xu + βyū)

Υ((x, y), (u, v)) = (yū2 + αȳv2,β−2(xu2 + αx̄v2))

for all (x, y) ∈ X0 and all (u, v) ∈ W0, and let ν and ψ be the
maps from X0 × W0 to K and to F given by

ν((x, y), (u, v)) = α(β−1(xuv̄ + x̄ūv) + yūv̄ + ȳuv)

ψ((x, y), (u, v)) = α(xȳu2 + x̄yū2 + α(xyv̄2 + x̄ȳv2))

for all (x, y) ∈ X0 and (u, v) ∈ W0. Now let U1 and U3 be groups
parametrized by X0⊕K and let U2 and U4 be groups parametrized
by W0⊕F . Let QF(K,L0, q) be the graph defined by the relations

[x1(a, t), x4(b, s)] =x2(Θ(a, b) + tb, q̂(a, t)s + ψ(a, b))

· x3(Υ(a, b) + sa, q(b, s)t + ν(a, b)),

[x1(a, t), x3(a
′, t′)] =x2(0, f2(a, a′))

[x2(b, s), x4(b
′, s′)] =x3(0, f1(b, b

′))

for all (a, t), (a′, t′) ∈ X0 ⊕ K and (b, s), (b′, s′) ∈ W0 ⊕ F . These
quadrangles are independent of the choice of the element ρ, the
complement S0 and the norm splitting (E, {v1, v2}).
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Generalized hexagons Let (J, F,N, ♯, T,×, 1) be one of the hexagonal sys-
tems. The functions T,N,× and the element 1 are all uniquely deter-
mined by J, F and the adjoint map ♯. Let U1, U3 and U5 be groups
parametrized by J and let U2, U4 and U6 be groups parametrized by
the additive group of F . Let H(J, F, ♯) denote the graph defined by the
relations

[x1(a), x3(b)] = x2(T (a, b)),

[x3(a), x5(b)] = x4(T (a, b)),

[x1(a), x5(b)] = x2(−T (a♯, b))x3(a × b)x4(T (a, b♯)),

[x2(t), x6(u)] = x4(tu) and

[x1(a), x6(t)] = x2(−tN(a))x3(ta
♯)x4(t

2N(a))x5(−ta)

for all a, b ∈ J and t, u ∈ F .

Generalized octagons Let (K,σ) be an octogonal set and let K(2)
σ be the

group with underlying set K × K and the multiplication given by

(t, u) · (s, v) = (t + s + uσv, u + v)

for all t, u, s, v ∈ K. Let U1, U3, U5 and U7 be groups parametrized by
the additive group of K and let U2, U4, U6 and U8 be groups parametrized
by K(2)

σ . Let xi(t) = xi(t, 0) and yi(u) = xi(0, u) for all t, u ∈ K and
all even i. Let Vi = {xi(t) | t ∈ K} for all even i. Let S denote the set
consisting of the following relations:

[U1, U2] = [U1, U3] = [U1, V4] = [U1, U5] = [V2, U4] = [u2, U6] = 1

[x1(t), y4(u)] = x2(tu),

[x1(t), x6(u)] = x4(tu),

[x1(t), y6(u)−1] = x2(t
σu)x3(tu

σ)x4(tu
σ+1)

[x1(t), x7(u)] = x3(t
σu)x5(tu

σ),

[x1(t), x8(u)] = x2(t
σ+1u)x3(t

σ+1uσ)y4(t
σu)x5(t

σ+1u2)y6(tu)−1x7(tu
σ),

[x1(t), y8(u)−1] =

y2(tu)x3(t
σ+1uσ+2)y4(t

σuσ+1)−1x5(t
σ+1u2+2σ)x6(t

σ+1u2σ+3)x7(tu
σ+2),

[y2(t), y4(u)] = x3(tu),

[x2(t), x8(u)] = x4(t
σu)x5(tu)x6(tu

σ),

[x2(t), y8(u)−1] = x3(tu)x4(t
σuσ+1)x6(tu

σ+2) and

[y2(t)
−1, y8(u)−1] = x3(t

σ+1u)y4(t
σu)−1y6(tu

σ)x7(tu
σ+1).
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for all t, u ∈ K. For each i, let τi denote the permutation of Z, which
sends each x ∈ Z to 2i − x and let N = ⟨τ0, τ1⟩ . For each relation
r ∈ S, let I(r) denote the set of indices which appear in r. For each
r ∈ S and each ρ ∈ N mapping I(r) onto a subset of {1, 2, . . . , 8}, we
let rρ denote the relation obtained from r by replacing each index by
its image under ρ. Let S0 be the set of all such relations rρ for r ∈ S.
The set S0 has a unique extension to a set of relations involving [ai, aj]
for all (i, j) ∈ I and all (ai, aj) ∈ ui × uj such that the conditions

Ak For each (i, j) ∈ Ik \ Ik−1 and all ai, bi ∈ Ui and aj ∈ Uj, the
equation

ξi,j(aibi, aj) = ξi,j(ai, aj)
biξi,j(bi, aj)

holds in the group Ui,j−1, Ik is the set of ordered pairs (i, j) such
that 1 ≤ i < j ≤ n and j−i ≤ k and ξi,j is a function from Ui×Uj

to U[i+1,j−1] with [ai, aj] = ξi,j(ai, aj) for (i, j) ∈ In−1.

Bk For each (i, j) ∈ Ik \ Ik−1 and all ai ∈ Ui and aj, bj ∈ Uj, the
equation

ξi,j(ai, ajbj) = ξi,j(ai, bj)ξi,j(ai, aj)
bj

holds in the group Ui+1,j,

Ck For each (i, j) ∈ Ik\Ik−1 and all (ai, aj) ∈ Ui×Uj and c ∈ U[i+1,j−1],
the equation

cξi,j(ai,aj) = c[ai,aj ] = ca−1
i a−1

j aiaj

holds where the expression c[ai,aj ] is evaluated by using the action
of Ui and Uj on U[i+1,j−1], obtained from the group structure on
U[i,j−1] and U[i+1,j].

hold for 2 ≤ k ≤ 7. Let O(K,σ) denote the graph defined by these
relations

Theorem 1.3.1 (Tits and Weiss [35]). A Moufang n-gon Γ exists only if

• n = 3 and Γ ∼= T (A) is a projective plane defined over some alternative
division ring A.

• n = 4 and Γ is of involutory, quadratic form, indifferent or pseudo-
quadratic form type or it is of E6, E7, E8 or F4-type.

• n = 6 and Γ ∼= H(J, F, #) is defined over some hexagonal system
(J, F, #).

• n = 8 and Γ ∼= O(K,σ) for some octogonal set (K,σ).
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1.4 Moufang Sets

A Moufang set is a system M = (X, (Ux)x∈X) consisting of a set X and
a family of groups of permutations of X indexed by X itself for which we
write the action of a permutation on a point on the right, using exponential
notation and satisfying the following conditions.

MS1 Ux fixes x ∈ X and acts sharply transitive on X\{x}.

MS2 In the full permutation group of X , each Ux normalizes the set of
subgroups {Uy|y ∈ X}.

The groups Ux will be called root groups . The elements of Ux are often
called root elations . If Ux is abelian for some x ∈ X , then it is abelian for
all x ∈ X and we call the Moufang set a translation Moufang set .

Moufang sets can be found inside Moufang generalized polygons: consider
2 opposite points p and q inside a Moufang n-gon, then the panels Pi, for
which {p} ∪ Pi ∪ {q} represents a root i.e. a path of length n, along with
their corresponding root groups form a Moufang set. Also polarities give rise
to Moufang sets. In one of the following chapters we shall work with the
Ree-Tits Moufang set which is such a Moufang set.

If (X, (Ux)x∈X) is a Moufang set, and Y ⊆ X , then Y , |Y | > 2, in-
duces a sub Moufang set if, for each y ∈ Y , the stabilizer (Uy)Y acts sharply
transitively on Y \ {y}. In this case (Y, ((Uy)Y )y∈Y ) is a Moufang set.

The group S generated by the Ux, for all x ∈ X , is called the little
projective group of the Moufang set. A permutation of X that normalizes
the set of subgroups {Uy ∥ y ∈ X}, is called an automorphism of the Moufang
set. The set of all automorphisms of the Moufang set is a group G, called the
full projective group of the Moufang set. Any group H , with S ≤ H ≤ G,
is called a projective group of the Moufang set. Projective groups can be
recognized as follows:

Lemma 1.4.1. (i) The little projective group S of a Moufang set (X, (Ux)x∈X)
acts doubly transitively on the set X.

(ii) A permutation group H (acting on X) is a projective group if and only
if Ux ! Hx, for every x ∈ X.

A group element g is said to act freely on a set S, if the group generated
by g does not contain any nontrivial element that fixes some x ∈ S. A group
acts freely on S if only the identity fixes some x ∈ S.

Since Moufang sets deal with sharply transitive actions, we quickly review
the basics of those actions. These statements and their proofs may be found
in every text book on basic group theory.
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Lemma 1.4.2. Let (G,X) be a sharply transitive group.

(i) Then we can identify X with G and the action of g ∈ G on the element
x ∈ X = G is given by right multiplication xg.

(ii) Suppose some permutation u commutes with every element of G = X.
Then u acts freely on X and the action of u is given by left multiplica-
tion with some element h ∈ G (so u maps every x ∈ X to hx).

(iii) If a transitive permutation group H centralizes G, then H acts sharply
transitively on X and there is an isomorphism ϕ : H → G such that the
action of h ∈ H on G = X is given by h : x /→ h−ϕx. If in particular
G is abelian, then H = G.

(iv) Suppose the sharply transitive permutation groups H and G normalize
each other. Then either G and H have a nontrivial intersection, or G
and H centralize each other.





Chapter 2

Moufang Conditions for
Generalized Quadrangles

The Moufang condition is a well-known and useful characterization of gen-
eralized polygons. In 1991 S. E. Payne, J. A. Thas and H. Van Maldeghem
wondered if there existed weaker versions of this condition. They came up
with the half Moufang condition and proved this condition is equivalent with
the Moufang notion for finite generalized quadrangles. In this chapter we will
define a bunch of Moufang-like conditions. We prove that the half 3-Moufang
property is equivalent with the Moufang condition, as a consequence the half
Moufang property and the 3-Moufang property are equivalent with the Mo-
ufang condition for generalized quadrangles. At the end of the chapter we
give a schematic overview of Moufang-like conditions which are equivalent
with the Moufang property and the Moufang-like conditions for which finite-
ness is required to obtain equivalence with the Moufang condition.

2.1 Subquadrangles and Moufang-like condi-
tions

A subquadrangle is a subgeometry of a generalized quadrangle which itself is
a generalized quadrangle. We say that a subquadrangle S ′ of S is full if for
every line L of S ′ all points on L in S also lie in S ′. Dually a subquadrangle
is ideal if a point is incident with the same lines in S ′ as in S.

For a set S of points (resp lines), we denote the set of points collinear
(resp lines concurrent) with every element of S with S⊥. The points collinear
(lines concurrent) with every element of S⊥ are denoted by S⊥⊥, this is the
span of S

Since we have to work a lot with permutation groups here, the following

15
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notation will come in handy: The group acting on the generalized quadrangle
and fixing the elements of a set X will be denoted by GX , the group fixing
all elements at distance i from at least one element of X though, will be
denoted by G[i]

X . Sometimes we will write G[x,y]
z when we mean G[1]

x,y ∩ Gz.
Let S = (P ,B, I) be a generalized quadrangle. An apartment is an

ordinary quadrangle in S. It consists of four points and four lines. Re-
call that a root is a set of five “consecutive” elements of an apartment.
Hence a root contains either two points x1, x2 and three lines L1, L2, L3,
with L1Ix1IL2Ix2IL3, or dually, it contains three points and two lines. It
will be useful to distinguish between these dual notions. Therefore, we will
call the former a root, and the latter (dually) a dual root . A root without its
extremal lines will be called a panel , more precisely, the interior (panel) of
the root. Similar but dual definitions exist for dual panels . So a panel is a
set of two distinct collinear points, together with the joining line.

dual panel panel

Note that the Main axiom of GQs implies that every pair of flags of S is
contained in at least one apartment of S.

We repeat the definition of the Moufang property but now for generalized
quadrangles.

Let S be a generalized quadrangle with full collineation group G =
Aut(S). Let π be a panel. Then we say that π has the Moufang prop-
erty (or, equivalently, π is a Moufang panel) if for some root α with interior

π, the group G[1]
π of collineations (called root elations and, dually, dual root

elations) fixing every element incident with any element of π acts transitively
on the set of apartments containing α.
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rootïelation dual rootïelation

Let π = {x, L, y}, with x, y ∈ P and L ∈ B. Let M be any line through
x distinct from L. Suppose π is a Moufang panel, and let α be a root with
interior π such that G[1]

π acts transitively on the set of apartments containing
α. Let u, u′ be two points on M distinct from x. Suppose the unique line
of α incident with y and unequal L is N . Then N is opposite M and we
may consider the distinct points u1 = projNu and u′

1 = projNu′. Using the
Main axiom of GQs, it is quite easy to see that u1 and u′

1 determine unique
apartments Σ and Σ′, respectively, containing α. Hence there is a collineation
θ ∈ G[1]

π mapping Σ to Σ′, and hence mapping u1 to u′
1. But since M is fixed

under θ by assumption, θ maps u to u′, and hence, for every line M ′ through
y distinct from L, θ maps the (unique) apartment containing π, u and M ′

to the (unique) apartment containing π, u′ and M ′. We have shown that
the definition of Moufang panel is independent of the root involved in that
definition.

If every panel and every dual panel of the GQ S has the Moufang property,
then we say that S has the Moufang property, or that S is a Moufang GQ.
If every panel is a Moufang panel, or if every dual panel is a Moufang dual
panel, then we say that S is a half Moufang GQ. If S is a Moufang GQ, then
the group generated by all root elations and dual root elations is called the
little projective group of S.

Let {x, L} be a flag of the GQ S. Let MIx and yIL such that y is

not incident with M . As we will see later, the group G[1]
x,L of collineations

fixing all lines through x and fixing all points on L acts freely on the set of
apartments containing {x, y, L,M}. We call the flag {x, L} a Moufang flag

if the group G[1]
x,L acts transitively (and hence sharply transitively) on the set

of apartments containing {x, y, L,M}. As before, one shows easily that this
definition is independent of the chosen line M through x, M ̸= L, and of the
chosen point y on L, y ̸= x.
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L

x
Moufang flag 

We see that the definition of a Moufang flag is a self-dual one, hence there
is no need to introduce something like a “dual Moufang flag”. If every flag
of the GQ S is a Moufang flag, then we call S 3-Moufang, where the number
3 refers to the length of the sequence (y, L, x,M) as a path in the incidence
graph of S (which is the graph (P ∪ B, I)). The 3-Moufang condition is a
completely self-dual one, and so one might think that a notion of “half 3-
Moufang” cannot be defined. But actually, one can take a kind of greatest
common divisor of the 3-Moufang condition and the half Moufang condition
to obtain the following definition of a half 3-Moufang generalized quadrangle.

Let {x, L} be a flag of the GQ S. Let zIMIx and KIyIL such that

z ̸= x, K ̸= L and y is not incident with M . As before, the group G[1]
x,L ∩Gz

acts freely on the set of apartments containing {x, y, z, L,M}, and the group

G[1]
[x,L] ∩ GK acts freely on the set of apartments containing {x, y,K,L,M}.

When, for every choice of z ∼ x, G[1]
x,L ∩ Gz acts transitively on the set of

apartments containing {x, y, z, L,M}, we say that the flag {x, L} is half 3-

Moufang at x, while a transitive action of G[1]
[x,L]∩GK on the set of apartments

containing {x, y,K,L,M}, for any choice for K concurrent with L, defines
S to be half 3-Moufang at L. The GQ S is called half 3-Moufang if either
every flag {x, L} of S is half 3-Moufang at x, or if every flag {x, L} of S is
half 3-Moufang at L.

Half 3ïMoufang at L

L

x

Half 3ïMoufang at x
L

x

K z

Now let x be any point of the GQ S. If the group G[x] of collineations
fixing all lines through x acts transitively on the set of points of S opposite
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x (here, this is not necessarily a regular action!), then we say that x is a
center of transitivity. Dually, we define an axis of transitivity . If all points
are centers of transitivity, and all lines are axes of transitivity, then we say
that S is a 2-Moufang GQ. If either all points are centers of transitivity, or
all lines are axes of transitivity, then we call S a half 2-Moufang GQ.

Let {x, L} again be a flag of the GQ S, with x a point and L a line.
Another flag {y,M} is called opposite {x, L} if the point y is opposite x and
the line M is opposite L. If the group Gx,L of all collineations of S fixing the
flag {x, L} acts transitively on the set of flags opposite {x, L}, then we say
that {x, L} is a transitive flag. If all flags are transitive, then we say that
S is a 1-Moufang GQ, or, equivalently, that S satisfies the Tits condition,
or that S is a Tits GQ. The last two names are motivated by their group
theoretic counterparts, the Tits systems . If S satisfies the Tits condition,
then the corresponding collineation group G acts transitively on the set of
ordered pairs of opposite flags of S.

For convenience, we shall sometimes also refer to the (half) 4-Moufang
condition for a (half) Moufang GQ.

2.2 Some straightforward implications

2.2.1 Root Groups are semi-regular

The group Gx0,...,xn+1 ∩ G[1]
xi,xi+1 contains only the identity. This is an imme-

diate corollary of [36] (4.4.2):

Theorem 2.2.1. Let g be a collineation of a generalized n-gon Γ with n even.
Then g is the identity if and only if g fixes an apartment Σ, all points on a
certain line L of Σ and all lines through a certain point p of Γ with d(p, L)
relatively prime to n (this happens in particular when p is incident with L).

We shall provide a proof for one particular case in order to get ac-
quainted with the necessary reasonings. From here on we will denote Σ =
(x0, x1, x2, x3, x4, x5, x6, x7, x8 = x0) where points are labeled with xi for i
even.

Theorem 2.2.2. The group Gx0,...,x5 ∩G[1]
x0,x1 acting on the generalized quad-

rangle S = (P ,B, I) contains only the identity.

Proof Any collineation g in this group has to fix the apartment Σ through
(x0, x1, x2, x3, x4, x5) since d(x0, x5) < 4.

So if we look at the fixed structure S ′ = (P ′,B′, I) the first 2 axioms of a
generalized quadrangle are immediately satisfied. If we now observe a point
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p and a line L not incident with p, we know that there is a unique point y
collinear with p on L in S, the collineation g can map this point only to a
point collinear with p on L, hence y is fixed by g and therefore belongs to
S ′. In the same way the unique line M in S concurrent with L through p
has to belong to S ′. In S ′, every line contains the same number of points
and the same number of lines goes through every point. This is certainly
true for opposite lines and opposite points, so let’s take a look at a line L
concurrent with x1: either this line is opposite to x5— which implies that L
has as many points in S ′ as x1— or L is concurrent with both x1 and x5,
in that case let’s observe any line through x0 distinct from x1 or x7. This
line is opposite to both x5 and L, so L carries the same number of points as
x1. This proves that g fixes a full generalized quadrangle, the dual reasoning
leads to the conclusion that g must be the identity. "

X7
~

x7

x1x0 x2

x3

x
6

x4
5x

L

g fixes Γ1(x1), Γ1(x5), Γ1(x̃7) and thus Γ1(L)

2.2.2 i-Moufang quadrangles and half i-Moufang quad-
rangles

For 2 ≤ i ≤ 4 every i-Moufang quadrangle is half i-Moufang: for i even, we
only demand that one half of the paths are i-Moufang while for i = 3 the tran-
sitivity of Gx7,x0,x1,x2 ∩G[1]

x0 ,x1 on the set of apartments through (x7, x0, x1, x2)
a fortiori implies transitivity on the apartments through (x6, x7, x0, x1, x2) or
on the apartments through (x7, x0, x1, x2, x3).
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2.2.3 Half i-Moufang quadrangles and half (i−1)-Moufang
quadrangles

The half Moufang condition implies half 3-Moufangness which implies the
half 2-Moufang property and thus 1-Moufangness

From half Moufang to half 3-Moufang If all dual panels are Moufang,
then every flag is Moufang at its point, in the same way Moufang panels
give rise to flags which are Moufang at their line.

From half 3-Moufang to half 2-Moufang If, for a fixed line L, all flags
{p, L} are half 3-Moufang at p, the line L is an axis of transitivity:
Indeed, consider 2 lines M1 and M2 both opposite L, let x and y be
two arbitrary points on L, then we can denote xi := projMi

x and
yi := projMi

y. Since x1 is not incident with the line yy2 there is a
unique line M ′ through x1 concurrent with the line yy2. We can define
α to be the unique collineation in G[1]

x,L ∩ Gx1 mapping M1 onto M ′.
Now we look for a collineation fixing all the points of L and mapping x1

to x2; so we may assume that x1 ̸= x2. If xx1 ̸= xx2 there is a unique
line M ′′ through x2 concurrent with M ′, their intersection point u′ is
collinear with a unique point u on L, the collineation β ∈ G[1]

u,L ∩ Gu′

mapping M ′ onto M ′′ indeed maps x1 onto x2. If xx1 = xx2 we can
first map x1 onto xg

1 with g ∈ G[L,y]
y1

α and then apply β, again x1 is
mapped onto x2. If we finally consider the projection of u onto the line
x2y2 and call it u′′ then it is clear that there is a unique collineation
γ ∈ G[1]

x,L ∩Gx2 mapping u′ onto u′′. Now the composition αβγ fixes all
points on L and maps M1 onto M2. Since Mi , i = 1, 2 were arbitrarily
chosen, it is clear that L is an axis of transitivity.

M
2

M
2
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The half 2-Moufang condition ensures the 1-Moufang property We
consider the apartment Σ and a flag {p, L} opposite to {x0, x1} , we
claim that there is a collineation of the generalized quadrangle fixing
{x0, x1} and mapping {x4, x5} onto {p, L} if every line is an axis of
transitivity. Of course, there is a collineation α fixing every point on
x1 and mapping the line x5 onto L. If we compose this collineation
with a collineation β fixing all points on xα

7 and mapping xα
3 onto the

unique line through p concurrent with x2, we have what we wanted.

x5x5

x x
x

x

xx

x p

L

20
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20
1
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2.2.4 i-Moufang quadrangles and (i−1)-Moufang quad-
rangles

From Moufang to 3-Moufang Consider 2 apartments Σ and Σ′ both go-
ing through the path (x7, x0, x1, x2), the apartment Σ′ being the cycle

(x0, x1, x2, x′
3, x

′
4, x

′
5, x

′
6, x7, x8 = x0). The collineation α ∈ G[1]

x7,x0,x1

mapping x3 to x′
3 followed by β ∈ G[1]

x0,x1,x2 mapping x6 onto x′
6 is a

collineation fixing all lines through x0, all points on x1 and it maps Σ
onto Σ′.
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From 3-Moufang to 2-Moufang Since every flag {x, L} is Moufang at its
point, every line L is an axis of transitivity. Dually, every flag {x, L}
is Moufang at its line, so every point is a center of transitivity.
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From 2-Moufang to 1-Moufang If half 2-Moufang quadrangles are 1-Moufang,
then surely 2-Moufang quadrangles are 1-Moufang.

2.3 Some Properties of Moufang Sets

Recall that a Moufang set is a set X, together with a group Ux for every
x ∈ X such that the groups Ux permute X \ {x}, and such that all the root
groups Ux are conjugate. A first question that can be asked is: do we really
need all the root groups in the definition? This is one answer.

Theorem 2.3.1. Let X (|X | > 2) be a set and let a, b ∈ X be distinct.
Let Ua and Ub be two permutation groups acting on X such that Ua fixes a
and acts sharply transitively on X \ {a}, while Ub fixes b and acts sharply
transitively on X \ {b}. Then Ua and Ub are root groups of at most one
common Moufang set. Also, they are root groups of a Moufang set if and
only if for each u ∈ U×

a , u ̸= id, there exists v ∈ Ub such that Uv
a = Uu

b , if
and only if Ua is normal in Ga, Ub is normal in Gb, and Ua is conjugate to
Ub in G := ⟨Ua, Ub⟩.

Proof. Suppose first that (X, (Ux)x∈X) is a Moufang set. For given
u ∈ Ua\{id}, define v ∈ Ub by av = bu. Then (MS2) implies that Uv

a = Uav =
Ubu = Uu

b . By the doubly transitivity of G, it maps Ua under conjugation to
Ub. Also, since G normalizes the Ux, the stabilizer Ga of a must normalize
Ua, hence Ua ! Ga and likewise Ub ! Gb.

Now suppose that for each u ∈ U×
a there exists v ∈ Ub such that Uv

a =
Uu

b . Clearly av = bu. This motivates the following notation. For each
x ∈ X \ {a, b}, denote by ux the unique element of Ua mapping b to x and
let vx be the unique element of Ub mapping a to x. Define Ux := Uvx

a =
Uux

b . Then we claim that (X, (Ux)x∈X) is a Moufang set. Indeed, (MS1)
is obvious, so consider (MS2). We have to show that, for all x ∈ X , the
group Ux permutes by conjugation the groups Uy, y ∈ X . For x ∈ {a, b},
this is trivial. If x /∈ {a, b}, then we can write an arbitrary element of Ux as
v−1

x uvx, with u ∈ Ua, and since each of v−1
x , u and vx preserves by conjugation

{Uy ∥ y ∈ X}, also v−1
x uvx does. It is now also clear that Ua and Ub are root

groups of at most one common Moufang set.
Now suppose that Ua is normal in Ga, Ub is normal in Gb, and Ua is con-

jugate to Ub in G = ⟨Ua, Ub⟩. Let u ∈ U×
a be arbitrary, and let v ∈ Ub be such

that bu = av. Then avu−1
= b. Since Ua and Ub are conjugate in G, there ex-

ists g ∈ G such that U g
a = Ub. Clearly ag = b, as a and b are unambiguously

determined by Ua and Ub, respectively. This implies that vu−1g−1 ∈ Ga, and
so, by assumption, Uvu−1g−1

a = Ua, hence Uv
a = U gu

a = Uu
b . The previous
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paragraph completes the proof of the proposition. "

The condition that for each u ∈ U×
a there exists v ∈ Ub such that Uv

a = Uu
b

is used by Timmesfeld [27] to define rank one groups. But note that a rank
one group has the additional condition that all root groups are nilpotent.

For a set X , elements a, b ∈ X (with |X | > 2), and permutation groups
Ua, Ub of X such that Ua (respectively, Ub) fixes a (respectively, b) and acts
sharply transitively on X \ {a} (respectively, X \ {b}), we call (X,Ua, Ub) a
Moufang triple if, for G = ⟨Ua, Ub⟩, Ua is normal in Ga, Ub is normal in Gb,
and Ua is conjugate to Ub in G.

Proposition 2.3.1 tells us something about the possibility of two root
groups to be contained in the same Moufang set. Now we want to look at
the situation where we have two Moufang sets acting on the same set X
and sharing at least one root group, and we want to find conditions under
which these Moufang sets are the same. More precisely, we have the following
result.

Theorem 2.3.2. Let (X, (Ux)x∈X) be a Moufang set, and let a, b ∈ X be
distinct. Moreover, let Wb be a permutation group acting on X, fixing b and
acting sharply transitively on X \{b}. Suppose that (X,Ua,Wb) is a Moufang
triple. If Ub ∩ Wb is nontrivial, or if Ub and Wb normalize each other, then
Wb = Ub. If Ub and Wb centralize each other, then Ub = Wb and the Moufang
set is a translation Moufang set.

Proof. Let M be the Moufang set determined by Ua and Ub, and let
N = (X, (Wx)x∈X) be the one determined by Ua and Wb, with Ua = Wa.
First suppose that v ∈ Ub ∩ Wb is nontrivial. Then Wav = W v

a = Uv
a = Uav

is a root group in both M and N , and since these Moufang sets are both
determined by Ua and Uav , they must coincide. Hence Ub = Wb.

Now suppose that Ub centralizes Wb. Then the action of Wb is opposite
the action Ub. Take arbitrary elements u ∈ Ua, v ∈ Ub and w ∈ Wb. Then
[v, w] = id, hence [vu, wu] = id and we see that the action of Wbu is opposite
the action of Ubu. If |X | = 3, then clearly Ub = Wb is commutative and
the result follows. Hence we may assume |X | ≥ 4, so that we can take two
distinct elements c, d in X \{a, b}. We then see that N is determined by the
permutation groups Wc and Wd the actions of which are opposite those of Uc

and Ud, respectively.
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U U U
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U W W
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a

x

x

b

b

N

Since u acts sharply transitively on X \ {a} and u fixes both M and N , all Wx

are opposite Ux for x ̸= a

By the doubly transitivity of the little projective group G(M) of M, there
is a permutation g ∈ G(M) interchanging a with b. Since [Ub,Wb] = {id},
we also have [U g

b ,W g
b ] = {id}. Hence, if we denote Uopp

a by Va, then, since
U g

b = Ubg = Ua, and since W g
b acts sharply transitively on X \{a}, we obtain

W g
b = Va. If cg−1

= c′ and dg−1
= d′, then similarly, one easily shows that

W g
c′ = Wc and W g

d′ = Wd.

g

U U

M

a

a

b

b

N’

U

Uc’

W’ W’ W’

Ud’

d’c’

g fixes M and maps N onto another Moufang Set N ′ = (X, (W ′
x)x∈X), where all

W ′
x are opposite Ux for x ̸= b.

Hence the conjugate N g of N contains the root groups Wc and Wd and
thus coincides with N . Comparing the root groups fixing b, we see that
Ub = Wb, and [Ub,Wb] = {id} implies that Ub is abelian. Hence M = N is a
translation Moufang set.

Finally suppose that Ub and Wb normalize each other. If they share a
nontrivial permutation of X , then by the first part of the proof Ub = Wb.
If they intersect trivially, then by Proposition 1.4.2(iv) they centralize each
other, and the second part of our proof implies again Ub = Wb. "
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2.4 Half 3-Moufang Quadrangles are Moufang

2.4.1 Main Idea

If all flags in S are Moufang at their point, it is fairly easy to construct a
collineation g fixing a root (x7, x0, x1, x2, x3), all points on x1 and moving Σ to
an arbitrary apartment through that root. Let x be any point on x1, x ̸= x0

and choose y ∼ x not lying on x1, we state that the action of G[1]
x1,x ∩ Gy on

the lines through x0 is independent of our choice for x and y. This allows a
collineation g′ fixing all elements incident with the panel x0, x1, x2. In other
words, every panel is Moufang and we have a half Moufang quadrangle. Since
a half Moufang quadrangle gives rise to flags which are Moufang at their lines,
we can apply a dual reasoning and conclude that half 3-Moufang quadrangles
are Moufang.

2.4.2 Proof

let S = (P ,B, I) be a thick generalized quadrangle with automorphism group
G, satisfying the half 3-Moufang Condition. More exactly, we assume that for
all dual roots {y0, y1, y2, y3, y4}, with y0Iy1I . . . Iy4, and with y0, y2, y4 ∈ P ,

the group G[y2,y3]
y0 acts transitively on the apartments containing y0, . . . , y4.

Our first aim is to show that S is half Moufang — more exactly, that all
panels are Moufang.

As in the previous section, we fix some apartment

Σ := {x0, x1, . . . , x7}, x0Ix1I · · · Ix7Ix0,

where x0 ∈ P , and where we read the subscripts modulo 8. We prove
some lemmas, under the assumptions just stated.

Lemma 2.4.1. All sequences (x, y, y′, z), with xIyIy′Iz, x ∈ B, x ̸= y′,

and y ̸= z, form a single orbit under G. In particular, all groups G[x,y]
z are

conjugate.

Proof. We already know that G acts transitively on the set of flags of
S so for any given (p, L) ∈ P × B, with pIL, it suffices to prove that the
group Gp,L acts transitively on the set of flags {x, y}, with xIyIp, x ̸= p and
y ̸= L. So let, with obvious notation, {x, y} and {x′, y′} be two such pairs.
First suppose that y ̸= y′. Then we choose arbitrarily some element z in
{x, x′}⊥ \ {p}. Set x1 := projLz and x2 := projzL. There is a collineation

u ∈ G[x1,x2]
p mapping x to x′, and hence y to y′.
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x’

y’y
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2x

If y = y′, then we consider any pair {y′′, x′′}, with pIy′′Ix′′, y ̸= y′′ ̸= L,
and z′′ ̸= p, apply twice the previous paragraph and get the result. "

Lemma 2.4.2. If in S the span {x, y}⊥⊥ of some opposite points x, y con-
tains at least 3 elements, then all dual panels of S are Moufang.

Proof. We may assume without loss of generality that {x, y} = {x2, x6}.
Let x′

6 ∈ {x2, x6}⊥⊥, with x2 ̸= x′
6 ̸= x6. Let x′

5 denote the line incident with

x4 and x′
6. As G[x3,x4]

x6 fixes {x2, x6}, the span {x2, x6}⊥⊥ has to be stabi-
lized as a set, but as the lines through x4 are fixed as well, this implies that
the span is fixed pointwise, and hence in particular x′

6 is fixed. Consider

an arbitrary element g ∈ G[x3,x4]
x6,x′

6
and choose an element h ∈ G

[x′
5,x′

6]
x4 map-

ping x2 to x6 (h exists by the half 3-Moufang assumption on the dual root

{x0, x0x′
6, x

′
6, x

′
5, x4}). The commutator [g, h] clearly belongs to G

[x4,x′
5,x′

6]
x6 and

hence is trivial. Consequently g = gh ∈ G[x3,x4,x5]. "
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Let Ω denote the set of lines incident with x0.

Lemma 2.4.3. Let x range over the set of points incident with x1, x ̸= x0,
and let y range over the set of points not on x1 but collinear with x. If the
action of G[x1,x]

y on Ω is independent of x and y, then all panels of S are
Moufang.
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Proof. It suffices to show that there is an element g ∈ G[x0,x1,x2] map-
ping x6 to an arbitrary point z ̸= x0 on x7. Let us start with an arbitrary
nontrivial collineation u ∈ G[x1,x2]

x4 . Then there is a unique point z′ on xu
5

collinear with z. Hence, if we denote by x′
2 the unique point on x1 collinear

with z′, then the collineation u′ ∈ G
[x1,x′

2]
z′ mapping xu

7 to x7 maps xu
6 to z.

The composition uu′ fixes all points on x1 and — by assumption — it also
fixes all lines incident with x0, since the action of u on Ω must be the inverse
of the action of u′ on Ω. Moreover, uu′ maps x6 to z. Also, the action of uu′

on the set of lines through x2 is the same as the action of u′ on that set (since
u fixes every line through x2). Interchanging now the roles of x0 and x2, we

see that the collineation u′′ ∈ G[x0,x1]
z mapping xu′

3 back to x3 has an action on
the lines through x2 that is inverse to the action of uu′ on that set. This im-
plies that uu′u′′ ∈ G[x0,x1,x2]. Since uu′u′′ maps x6 to z, the assertion follows."
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So, with the notation of the previous lemma, we will first fix x, vary y,
and prove independence of the appropriate action; afterwards, we vary x and
make particular choices for the points y.

Lemma 2.4.4. Let y be any point not on x1 collinear with x2. Then the
action of G[x1,x2]

y on Ω is independent of y.

Proof. First we note that we may assume y to be incident with x3.
Indeed, this follows immediately from the fact that the group G[x0,x1]

x6 acts
transitively on the lines through x2 distinct from x1, and so any group G[x1,x2]

z ,
with z any point not on x1 but collinear with x2, can thus be seen as a
conjugate of some G[x1,x2]

y , with yIx3, under a collineation which fixes all
lines through x0.

Now, if the action of G[x1,x2]
y on Ω were not independent of the choice of y,

with y incident with x3, then we may assume that for some yIx3, y ̸= x2, the
action of the group G1 := G[x1,x2]

y on Ω differs from the action of the group
G2 := G[x2,x3]

x0 on Ω. Since this statement does not involve x4, x5, x6 and x7,
we may rename x4 as y and hence assume G1 = G[x1,x2]

x4 . Note that both G1

and G2 act faithfully on Ω.
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GG
1 2

Suppose first that there is an element u ∈ G1 ∪G2 such that u commutes
with every element of G1∪G2. We claim that G1 and G2 must have the same
action on Ω. Indeed, if not, then there is a collineation g1 ∈ G1 such that its
action on Ω is not induced by any element of G2. Let g2 ∈ G2 be such that
g2 maps xg1

7 back to x7. Noting that (xu
6)

g1g2 = (xg1g2
6 )u = xu

6 , we see that

g1g2 ∈ G[x2]
x6,xu

6
. If xu

6 were not contained in {x2, x6}⊥⊥, then g1g2 would fix at
least three points on some line through x2, implying that g1g2 would fix an
ideal subGQ. This contradicts the fact that g1g2 does not fix all lines through
x0. Hence we have a point span of at least three elements. Lemma 2.4.2 now
implies that S is half Moufang with respect to dual roots, i.e., G1 = G2.

Hence we may assume that the centralizer of G1∪G2 in G1∪G2 is trivial.
Note that G1 and G2 normalize each other. We claim that G1 cannot have
a commutative action on Ω. Indeed, if G1 were commutative, then also
G2 would be commutative (as by Lemma 2.4.1 the groups G1 and G2 are
conjugate, and they both act faithfully on Ω). If only the identity in G1

has the same action on Ω as some element of G2, then G1 and G2 centralize
each other, contradicting the assumption that the centralizer of G1 ∪ G2 in
G1 ∪ G2 is trivial (alternatively, by Proposition 1.4.2(iii) two abelian groups
acting regularly on a set Ω and centralizing each other must have the same
action on Ω). Hence there is some nontrivial element c1 in G1 having the
same action on Ω as an element c2 in G2. Now c1 centralizes G1 since G1 is
commutative. Since c1 and c2 have the same action on Ω, this implies that
[c2, G1] acts trivially on Ω. Since [c2, G1] ≤ G1 ∩ G2, this implies [c2, G1] =
{id}. Consequently both c1, c2 centralize G1∪G2, again a contradiction with
our assumptions. The claim is proved.

Next we claim that only the identity in G1 has the same action on Ω as
some element of G2. Indeed, suppose by way of contradiction that there is a
u1 ∈ G×

1 inducing the same action on Ω as some u2 ∈ G2. Since u1 cannot lie
in the center of G1∪G2, we may suppose there is a g ∈ G1∪G2 such that the
commutator [u1, g] ̸= id (and this is equivalent to the assumption that the
action on Ω of that commutator be nontrivial). Suppose g ∈ G2 — the case
g ∈ G1 is similar, if one interchanges the roles of x0 and x4, noting that the
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action of G1 and G2 on Ω is permutation equivalent with their action on the
set of lines through x4. Consider an arbitrary h ∈ G[x0,x1]

x6 ; then gh induces
the same action on Ω as g. It is clear that all the commutators [u1, g], [u2, g]
and [u2, gh] induce the same action on Ω, and each of them fixes all points of
x3. This easily implies [u1, g] = [u2, g] = [u2, gh] =: u (use Corollary 2.2.1).
Since [u2, gh] fixes the line xh

3 pointwise and since h is arbitrary, we see that
u, which is not trivial, fixes all points collinear with x2. So, the image of
x6 under u must lie in the span of x2 and x6 which forces the generalized
quadrangle to be half Moufang with respect to dual roots by Lemma 2.4.2.
But then again G1 = G2, a contradiction.

Hence the regular actions of G1 and G2 on Ω normalize each other and
share only the identity. This easily implies that they centralize each other,
and the actions on Ω are opposite, see Proposition 1.4.2(iii) and (iv).

We conclude that, for arbitrary yIx3, y ̸= x2, the action of G[x1,x2]
y on Ω

either is the same as the action of G2 on Ω, or it is opposite.
Suppose both really occur. So for some yIx3, y ̸= x2, the action of

G1 = G[x1,x2]
y on Ω is opposite the action of G2 on Ω, and for some zIx3,

z ̸= x2, the action of G3 := G[x1,x2]
z on Ω is the same as the action of G2 on

Ω. Since G1 ∩ G2 is trivial, no nontrivial element of G2 can fix all points on
x1. This implies that G2∩G3 is trivial. But G2 and G3 normalize each other,
hence they centralize each other. This means that the action of G3 on Ω —
which is the same as the action of G2 on Ω — centralizes the action of G2 on
Ω, hence this action is commutative! This contradicts a previous claim.

We conclude that all actions of G[x1,x2]
y on Ω, yIx3, y ̸= x2, either are the

same as the action of G2 on Ω, or are opposite. In particular, the action is
independent of y.

The lemma is proved. "

Lemma 2.4.5. If x′
2 is an arbitrary point on x1, x′

2 ̸= x0, and x′
4 is the unique

point on x5 collinear with x′
2, then the action of G[x1,x2]

x4 on Ω coincides with

the action of G
[x1,x′

2]
x′
4

on Ω.

Proof. Let U2 be the permutation group acting on Ω given by the action
of G[x1,x2]

x4 . Define U ′
2 as the permutation group on Ω given by the action of

G
[x1,x′

2]
x′
4

. We assume that U2 ̸= U ′
2 and seek a contradiction.

Let U6 be the permutation group acting on Ω defined by G[x6,x7]
x4 , and

note that by Lemma 2.4.4, this action is the same as the one induced by
G[x6,x7]

x′
4

on Ω. Now notice that G[x1,x2]
x4 is normal in Gx0,x2,x4 , that G[x6,x7]

x4

is normal in Gx0,x6,x4, and that G[x1,x2]
x4 is conjugate to G[x6,x7]

x4 in the group

H generated by both (indeed, if g is nontrivial in G[x6,x7]
x4 , then there is a
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unique element h ∈ (G[x1,x2]
x4 )g mapping x3 to x5 and hence x2 to x6 and x1

to x7; then (G[x1,x2]
x4 )h = G[x6,x7]

x4 ). Consequently, U2 and U6 are conjugate in
K := ⟨U2, U6⟩, U2!Kx1 and U6!Kx7 (although K is defined as a permutation
group acting (only) on Ω, it is clear what we mean with Kx1 and Kx7). By
Lemma 2.3.1, (K, Ω) defines a Moufang set with root groups U2 and U6.
Likewise, (K ′, Ω), with K ′ = ⟨U ′

2, U6⟩, defines a Moufang set with root groups
U ′

2 and U6. We now want to apply Theorem 2.3.2 to obtain a contradiction.
So we show that U2 and U ′

2 normalize each other.
Choose arbitrary nontrivial u2 ∈ U2 and u′

2 ∈ U ′
2, and let them be induced

by the collineations g ∈ G[x1,x2]
x4 and g′ ∈ G

[x1,x′
2]

x′
4

, respectively. Then gg′

belongs to G[x1,x2]

xg′
4

, which has the same action on Ω as G[x1,x2]
x4 by Lemma 2.4.4.

Hence u
u′
2

2 ∈ U2 and U ′
2 normalizes U2. Similarly, U2 normalizes U ′

2.
Now Lemma 2.3.2 leads to a contradiction. "

Lemmas 2.4.3, 2.4.4 and 2.4.5 complete the proof of the following theorem.

Theorem 2.4.6. If every flag of a GQ is half 3-Moufang at its point, then
all panels are Moufang. "

2.4.3 Corollaries

We have the following easy corollary, see also Tent [20] and Haot and Van
Maldeghem [7].

Corollary 2.4.7. Every half Moufang GQ is a Moufang GQ. Hence every
half 3-Moufang GQ is a Moufang GQ.

Proof. Assume all dual panels are Moufang. Then obviously all flags
are half 3-Moufang at their points. According to Theorem 2.4.6, every panel
is Moufang. "

Corollary 2.4.8. Every 3-Moufang GQ is Moufang.

Proof. This follows immediately from the fact that every 3-Moufang
quadrangle is half 3-Moufang and the previous theorem. "
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2.5 Other characterizations

2.5.1 Generalized quadrangles

For completeness’ sake, we state some other results concerning Moufang
generalized quadrangles without proof: the first one was observed by Van
Maldeghem [37] the second one is due to K.Thas and H. Van Maldeghem
[26], the third one we owe to Tent and Van Maldeghem [23]

Theorem 2.5.1. Every thick 2-Moufang generalized quadrangle S = (P ,B, I)
is a Moufang generalized quadrangle

Theorem 2.5.2. The half 2-Moufang condition is equivalent to the Moufang
condition in the finite case

Theorem 2.5.3. Fong-Seitz generalized quadrangles are Moufang.

A Fong Seitz generalized quadrangle is a 1-Moufang generalized quad-
rangle for which its BN -pair has a splitting. What this exactly means will
become clear in the next chapter.

2.5.2 Generalized n-gons

This observation was made by K. Tent [21], it is especially interesting for
generalized hexagons: it implies that the Moufang property is equivalent
with the k-Moufang property (1 < k ≤ n)

Theorem 2.5.4. If Γ is a 2-Moufang generalized n-gon for n ≤ 6, then Γ is
Moufang.
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2.6 Schematic Overview of the Moufang Con-
ditions in a Generalized Quadrangle

Tits GQhalf 2 moufang

FongïSeitz GQ
half 3 moufang

Half moufang GQ

Moufang GQ

2ïmoufang

Moufang GQ if finite GQ

Moufang GQ

3ïmoufang GQ





Chapter 3

BN-pairs

In this chapter we consider all Moufang sets arising from a pair of opposite
root groups in a Moufang building of rank 2, and the Moufang sets corre-
sponding to the Suzuki groups and the Ree groups. In all these cases (except
for one well understood exception), the (natural) root groups are the only
transitive nilpotent normal subgroups U of the point stabilizers Gx.

Since this chapter tells us something about the behaviour of root groups
in Moufang buildings, we first define buildings, we continue with the closely
related notion of a BN -pair. The split BN -pairs of rank 1 are the already
known Moufang sets. We have a classification of the finite Moufang sets
coming from Moufang buildings of higher rank and we will use it in order to
prove that the splitting of a BN -pair of rank 1 is unique. We conclude with
the statement that every split BN -pair has a unique splitting, no matter
what rank the BN -pair has.

We remark that the fact that the uniqueness of U of rank 1 implies the
classification of split BN -pairs of higher rank was also noticed independently
by Timmesfeld [28], who proved a similar result for a rather restricted class
of BN -pairs of rank 2, namely only those appearing as proper residues in an
irreducible spherical BN -pair of higher rank.

Finally, we remark that all finite Moufang sets are classified. In the case
where the little projective group (see below for a definition) is not sharply
2-transitive, one has either PSL2(q), q ≥ 4, PSU3(q), q ≥ 3, Sz(q) ∼= 2B2(q),
q ≥ 8, and Ree(q) ∼= 2G2(q), for appropriate prime powers q. This has been
shown by Hering, Kantor and Seitz [8] (odd characteristic) and Shult [17]
(even characteristic).

35
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3.1 Some Definitions concerning BN-pairs

In this section we encounter the definition of a building and we define (split)
BN -pairs, both notions were first described in [32]. We also describe the
µ-action of a Moufang set, actions preserving the Moufang set and fixing two
elements (0 and ∞) of the Moufang set.

3.1.1 Buildings

A simplicial complex (S,X) is a set S together with a set X of subsets of S,
such that the union of X is S and such that every subset of every element
of X itself belongs to X . The elements of X are called the simplices or
faces ; the maximal elements of X are called the chambers of (S,X). If we
remove one element from a chamber, then we talk about a panel. Adjacent
chambers are chambers which meet in a panel. A chamber complex is a
simplicial complex (S,X) such that all chambers are finite and have the same
cardinality, and such that every two chambers can be joined by a sequence
of consecutively adjacent chambers, a so-called (non-stammering) gallery. A
chamber complex is called thick if every panel is in at least three chambers; it
is called thin if every panel is in exactly two chambers. A chamber subcomplex
(S ′, X ′) of a chamber complex is a chamber complex with S ′ ⊆ S and X ′ =
{A ∈ X : A ⊆ S ′}.

Let ∆ be a (chamber) complex and let A be a set of subcomplexes of ∆.
The pair (∆,A) is called a building, of which the elements of A are called
apartments, if the following conditions hold:

B1 ∆ is thick.

B2 The elements of A are thin chamber complexes.

B3 Any two elements of ∆ belong to an apartment.

B4 If two apartments Σ and Σ′ contain two elements A,A ∈ ∆, there exists
an isomorphism of Σ onto Σ′ which leaves invariant A, A′ and all their
faces.

We already met buildings of rang 2, these are the generalized polygons.
the chambers are flags and apartments are ordinary polygons. We also know
some buildings of rank one; the Moufang sets are the rank one buildings
satisfying the Moufang Condition and every set is an abstract building of
rank 1. To read more about buildings, the main reference is of course [32],
another book introducing buildings (using many examples) is [11].
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3.1.2 BN-pairs

A BN-pair in a group G is a system (B,N) consisting of two subgroups of G
such that

BN0 B and N generate G.

BN1 B ∩ N = H ! N .

BN2 The group W = N/H is a Coxeter group with standard generating set
S (of involutions) such that the following two relations hold for any
s ∈ S and any w ∈ W :

BN ′
2 sBwB ⊆ BwB ∪ BswB.

BN ′′
2 sBs ! B.

The group W is called the Weyl group of the BN-pair. A BN-pair is called
split whenever there exists a subgroup U of B which is nilpotent and such
that U · H = B, with H = B ∩ N .

In general B is the stabilizer of a chamber C in a building, N stands for
the stabilizer of one (arbitrary) fixed apartment, so H must be the pointwise
stabilizer of this apartment. The Weyl group is then the full automorphism
group of this apartment viewed as a thin chamber complex itself and the
group U is a group fixing C and acting transitively on the chambers opposite
C, we say U is a transitive normal nilpotent subgroup of B.

The analogue with generalized polygons is quite direct: B fixes a flag, N
an arbitrary n-gon through that flag. W is isomorphic to the dihedral group
D2n. The transitive nilpotent normal subgroup can for example be a Sylow
p-subgroup of the little projective group in a finite Moufang n-gon, with p
a divisor of its order. In general U+ := U[1,n] (see 1.3) is such a transitive
nilpotent normal subgroup of B.

3.1.3 Split BN-pairs translated into Moufang sets

We have already seen that Moufang panels in generalized n-gons can be seen
as Moufang Sets. These Moufang buildings of rank 2 contain 2 (possibly
isomorphic) Moufang sets.
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Moufang sets in a generalixed hexagon.

For buildings of rank one, the split condition translates beautifully into
Moufang sets. For a given projective group G we say a subgroup Vx of Gx is
a unipotent subgroup of G if

US1 Vx acts transitively on X \ {x}.

US2 Vx ! Gx.

US3 Vx is nilpotent.

The group Vx is a transitive normal nilpotent subgroup of the Moufang set.
In all known examples, the root groups Ux are nilpotent, hence they are also
transitive nilpotent subgroups of the Gx. The main goal of this chapter is to
show that they are the unique transitive nilpotent normal subgroups.

3.1.4 An important automorphism of a Moufang Set

Later on, we will encounter so-called µ-actions, these are actions generated
by the root groups U0 and U∞, a simple µ-action switches (0) and (∞),
while a double µ-action fixes them. If we define ta as the element of U∞
mapping 0 to a while t′a ∈ U0 maps ∞ onto a, the simple µ-action µa(x)
is the composition tat′a

−1tb−1 where b is the image of (∞) under t′a
−1. The

double µ-action is then µ1(x)−1µa(x), this defines a sort of morphism of the
underlying algebraic structure.

0

0

0

8
8

8a

a

a
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3.2 Classification of split Moufang sets aris-
ing from Moufang polygons

3.2.1 Projective lines over skew fields

Let K be any skew field. Put X equal to the set of vector lines of the
2-dimensional (left) vector space V (2, K) over K. After a suitable coordina-
tization, let 0 denote the vector line spanned by (1, 0) and ∞ the vector line
spanned by (0, 1). Then, with regard to the usual (right) action of matrices
on vectors (and hence on vector lines), we define U+

0 as the group of matrices(
1 0
k 1

)
, for all k ∈ K. The group U+

∞ consists of the matrices
(

1 k
0 1

)
,

k ∈ K.
The little projective group is here PSL3(K) in its natural action. We

denote this Moufang set as MPL(K) and call it the projective line over K.
The corresponding set is sometimes denoted by PG(1, K).

Let’s compute the µ-actions for the pair (U+
∞, U+

0 ). One obtains

µ((1, a)) =

(
1 a
0 1

)(
1 0

−a−1 1

)(
1 a
0 1

)
=

(
0 a

−a−1 0

)
.

So µ(1, a) : K(x, y) /→ K(ya−1,−xa). The double µ-action is now easy:
µ((1, 1), (1, a)) : K(x, y) /→ K(xa−1, ya).

Identifying K(1, k) with k ∈ K and K(0, 1) with the element ∞, we may
also write the above actions as follows:

U+
∞ = {u : x /→ x + a,∞ /→ ∞ | a ∈ K},

U+
0 = {u : x /→ (x−1 + a−1)−1,−a /→ ∞,∞ /→ a, 0 /→ 0 | a ∈ K},

µ(a) : x /→ −ax−1a, 0 ↔ ∞,

µ(1, a) : x /→ axa.

We will refer to this as the non-homogeneous representation.

3.2.2 Projective lines over alternative division rings

An alternative division ring is a ring A with identity 1 in which the following
laws hold:

(ADR1) For each non-zero element a, there exists an element b such that b·ac = c
and ca · b = c for all c ∈ A.

(ADR2) (ab · a)c = a(b · ac) and b(a · ca) = (ba · c)a for all a, b, c ∈ A.
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(ADR3) ab · ca = a(bc · a) = (a · bc)a for all a, b, c ∈ A.

An alternative division ring is associative if and only if it is a skew field.
The only non-associative alternative division rings are the Cayley-Dickson
division rings, so every two elements of an alternative division ring are con-
tained in a sub skew field.

As, by (ADR1), each element a of A has a unique inverse a−1, we may
define the root groups U+

0 and U+
∞ in the same way as we did for the skew

fields in the non-homogeneous representation. We then also obtain the same
results for the simple and double µ-actions (and note that expressions like axa
are unambiguous by (ADR2)). The corresponding Moufang set is denoted
by MPL(A) and called the projective line over A.

3.2.3 Polar lines

Let K be a skew field and let σ be an involution of K (so (ab)σ = bσaσ, for
all a, b ∈ K). Define Kσ = {a+aσ | a ∈ K} and FixK(σ) = {a ∈ K | aσ = a}.
Let K0 be an additive subgroup of K such that

(IS1) Kσ ⊆ K0 ⊆ FixK(σ),

(IS2) aσK0a ⊂ K0 for all a ∈ K,

(IS3) 1 ∈ K0.

Then (K,K0,σ) is called an involutory set. The restriction of MPL(K)
to K0 ∪ {∞} in the non-homogeneous representation is well defined and
is a Moufang set, called a polar line, denoted by MPL(K,K0,σ). Hence,
again, the root group actions and the µ-actions can be copied from the non-
homogeneous representation of projective lines over a skew field given above.

3.2.4 Hexagonal Moufang sets

The notion of a hexagonal system is essentially equivalent to the notion of a
quadratic Jordan division algebra of degree three.

A hexagonal system is a tuple (J, F, N, #, T,×, 1), where F is a commu-
tative field, J is a vector space over F, N is a function from J to F called the
norm, # is a function from J to itself called the adjoint, T is a symmetric
bilinear form on J called the trace, × is a symmetric bilinear map from J× J
to J and 1 is a distinguished element of J \ {0} called the identity such that
for all t ∈ F and all a, b, c ∈ J, the following identities hold.

• (ta)# = t2a#,
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• N(ta) = t3N(a),

• T(a × b, c) = T(a, b × c),

• (a + b)# = a# + a × b + b#,

• N(a + b) = N(a) + T(a#, b) + T(a, b#) + N(b),

• T(a, a#) = 3N(a),

• a## = N(a)a,

• a# × (a × b) = N(a)b + T(a#, b)a,

• a# × b# + (a × b)# = T(a#, b)b + T(a, b#)a,

• 1# = 1,

• b = T(b, 1) · 1 − 1 × b,

• N(a) = 0 if and only if a = 0.

If we define the inverse a−1 of an arbitrary nonzero a ∈ J as a−1 =
N(a)−1a#, then we can define the Moufang set MH(J) related to J in ex-
actly the same way as before for the projective line over a field K, in its
non-homogeneous representation. These Moufang sets are called hexagonal
Moufang sets.

Hexagonal systems are classified by the work of various people. We refer
to [35] for more details.

3.2.5 Orthogonal Moufang sets

Let K be a commutative field and let L0 be vector space over K. An
anisotropic quadratic form q on L0 is a function from L0 to K such that

(AQF1) q(ta) = t2q(a) for all t ∈ K and all a ∈ L0,

(AQF2) the function f : L0 ×L0 → K given by f(a, b) = q(a + b)− q(a)− q(b),
for all a, b ∈ L0, is bilinear,

(AQF3) q−1(0) = {0}.
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The map f is called the bilinear form associated with q. Now embed L0 in
a vector space L over K as a codimension 2 subspace; hence we may put
L = K × L0 × K, and we define X as the set of all vector lines K(x−, v0, x+)
in the vector space K × L0 × K) such that x−x+ = q(v0). Then U+

(0,0,1)

consists of the maps uw, w ∈ L0, fixing K(0, 0, 1) and mapping K(1, v, q(v))
onto K(1, v +w, q(v +w)). Likewise, U+

(1,0,0) consists of the maps u′
w, w ∈ L0,

fixing K(1, 0, 0) and mapping K(q(v), v, 1) onto K(q(v + w), v + w, 1). This
defines a Moufang set, called an orthogonal Moufang set over K, and denoted
by MO(K, q).

One calculates that uw maps K(q(v), v, 1) onto the vector line K(q(z), z, 1),
with

z = q(v)q(q(v)w + v)−1(q(v)w + v).

If L0 has dimension 1, then we may put q(x) = x2 and MO(K, q) is
isomorphic with the projective line MPL(K). If L0 has dimension 2, then q
defines a field extension F of K and MO(K, q) is isomorphic with MPL(F).

This class of Moufang sets also comprises the ones related to indifferent
sets (with the terminology of [35], see [34]).

3.2.6 Hermitian Moufang sets

Let (K,K0,σ) be an involutory set, let L0 be a right vector space over K and
let q be a function from L0 to K. Then q is an anisotropic pseudo-quadratic
form on L0 with respect to K0 and σ if there is a skew-hermitian form (with
respect to σ) f on L0 such that

(APQF1) q(a + b) ≡ q(a) + q(b) + f(a, b) (mod K0),

(APQF2) q(at) ≡ tσq(a)t (mod K0)
for all a, b ∈ L0 and all t ∈ K,

(APQF3) q(a) ≡ 0 (mod K0) only for a = 0.

An anisotropic pseudo-quadratic space is a quintuple (K,K0,σ, L0, q) such
that (K,K0,σ) is an involutory set, L0 is a right vector space over K and q
is an anisotropic pseudo-quadratic form on L0 with respect to K0 and σ.

Let (K,K0,σ, L0, q) be some anisotropic pseudo-quadratic space and let f
denote the corresponding skew-hermitian form. Following (11.24) of [35], let
(T, ·) denote the group {(a, t) ∈ L0 ×K | q(a)− t ∈ K0} with (a, t) · (b, u) =
(a + b, t + u + f(b, a)) and choose (a, t) ∈ T \ {(0, 0)} and s ∈ K \ {0}. Then
we may put X = T ∪ {∞}, and the group U+

∞ is given by the right action of
T on itself. The double µ-action is given by µ((0, 1), (a, t) =: µ(a,t) : (b, v) /→
((b − at−1f(a, b))tσ, tvtσ).

These Moufang sets are called Hermitian Moufang sets.
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3.2.7 An exceptional Moufang set of type E7

There is a Moufang set corresponding with an algebraic group of absolute
type E7 and which also arises from an exceptional Moufang quadrangle of
type E8.

Let K be a commutative field, let L0 be a vector space over K and let
q be a quadratic form on L0 with associated bilinear form f . We say that
(K, L0, q) is a quadratic space.

A norm splitting of (K, L0, q) is a triple (E, ·, {v1, . . . , vd}) such that;

• E/K is a separable quadratic extension,

• · is a scalar multiplication from E × L0 to L0 extending the scalar
multiplication from K × L0 and

• {v1, . . . , vd} is a basis of L0 over E (with respect to ·) and

q(t1 · v1 + · · · + td · vd) = s1N(t1) + · · · + sdN(td)

for all t1, . . . , td ∈ E, where si = q(vi) for all i ∈ {1, . . . , d} and N is
the norm of the extension E/K.

A norm splitting map of q is an automorphism T of L0 such that for some
α ∈ K (α = 0 if and only if char(K) ̸= 2) and for some β ∈ K \ {0})

(i) q(T (v)) = βq(v)

(ii) f(v, T (v)) = αq(v)

(iii) (T 2 + αT + β)(v) = 0, ∀v ∈ L0

Let (K, L0, q) be a quadratic space, then

• (K, L0, q) is of type E6 if q is anisotropic, dimKL0 = 6 and q has a norm
splitting.

• (K, L0, q) is of type E7 if q is anisotropic, dimKL0 = 8 and q has a norm
splitting (E, {v1, . . . , v4) with constants s1, . . . , s4 such that s1 . . . s4 /∈
N(E).

• (K, L0, q) is of type E8 if q is anisotropic, dimKL0 = 12 and q has
a norm splitting (E, {v1, . . . , v6) with constants s1, . . . , s6 such that
−s1 . . . s6 ∈ N(E).
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Starting from this quadratic space of type Ek (k = 6, 7 or 8), we take a
base point ϵ such that q(ϵ) = 1 (if necessary, we replace q by q/q(ϵ)) and let
X0 be a vector space of dimension 2k−3. We then define some map h from
X0 × X0 to L0 which is bilinear over K, its explicit description is stated in
[35],(13.18) but we shall not need it. We also define a bilinear form g on X0

as a vector space over K:

g(a, b) = f(h(b, a), δ)

for all a, b ∈ X0, where δ = ϵ/2 if char(K) ̸= 2 and δ = T (ϵ)/f(ϵ, T (ϵ)) if
char(K) = 2.

At last we define a function θ from X0×L0 to L0. (For explicit description:
see [[35],13.28 and 13.34] and we let π(a) = θ(a, ϵ), π(a, t) = π(a) + tϵ

3.2.8 Suzuki-Tits Moufang sets

Let K be a field of characteristic 2, and denote by K2 its subfield of all squares.
Suppose that K admits some Tits endomorphism θ, i.e., the endomorphism
θ is such that it maps xθ to x2, for all x ∈ K. Let Kθ denote the image
of K under θ. Let L be a vector space over Kθ contained in K, such that
Kθ ⊆ L and such that L \ {0} is closed under taking multiplicative inverse.
For a unique standard notation, we also assume that L generates K as a ring.
The Suzuki-Tits Moufang set MSz(K, L, θ) can be defined as the action of
a certain subgroup of the centralizer of a polarity of a mixed quadrangle
Q(K, Kθ; L,Lθ) on the corresponding set of absolute points. A more precise
and explicit description goes as follows.

Let X be the following set of points of PG(3, K), given with coordinates
with respect to some given basis:

X = {(1, 0, 0, 0)} ∪ {(a2+θ + aa′ + a′θ, 1, a′, a) | a, a′ ∈ L}.
Let (x, x′)∞ be the collineation of PG(3, K) determined by

(x0 x1 x2 x3) /→ (x0 x1 x2 x3)

⎛

⎜⎜⎝

1 0 0 0
x2+θ + xx′ + x′θ 1 x′ x

x 0 1 0
x1+θ + x′ 0 xθ 1

⎞

⎟⎟⎠ ,

and let (x, x′)0 be the collineation of PG(3, K) determined by

(x0 x1 x2 x3) /→ (x0 x1 x2 x3)

⎛

⎜⎜⎝

1 x2+θ + xx′ + x′θ x x′

0 1 0 0
0 x1+θ + x′ 1 xθ

0 x 0 1

⎞

⎟⎟⎠ .
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The group Sz(K, L, θ) is generated by the subgroups

U+
∞ = {(x, x′)∞ | x, x′ ∈ L} and U+

0 = {(x, x′)0 | x, x′ ∈ L}.
Both subgroups U+

∞ and U+
0 indeed act on X , as an easy computa-

tion shows, and they act sharply transitively on X \ {(1, 0, 0, 0)} and X \
{(0, 1, 0, 0)}, respectively. Moreover, it can be checked easily that (U+

0 )(x,x′)∞ =
(U+

∞)(y,y′)0 , with

y =
x′

x2+θ + xx′ + x′θ and y′ =
x

x2+θ + xx′ + x′θ .

It now follows rather easily that we indeed obtain a Moufang set. When
emphasizing one particular point, namely (∞) := (1, 0, 0, 0), we can write
(a, a′) := (a2+θ + aa′ + a′θ, 1, a′, a), and the unique element of U+

∞ that maps
(0, 0) to (b, b′) is given by (b, b′)∞ : (a, a′) /→ (a + b, a′ + b′ + abθ). The
root group U+

∞ is given by the set {(a, a′)∞ | a, a′ ∈ L} with operation
(a, a′)∞ ⊕ (b, b′)∞ = (a + b, a′ + b′ + abθ)∞.

We remark that, if L = K, then the Moufang set can also be obtained
from a Moufang octagon, unlike the case L ̸= K.

3.2.9 Ree-Tits

Let K be a field of characteristic 3, and denote by K3 its subfield of all
third powers. Suppose that K admits some Tits endomorphism θ, i.e., the
endomorphism θ is such that it maps xθ to x3, for all x ∈ K. Let Kθ denote
the image of K under θ. The Ree-Tits Moufang set MRee(K, θ) can be
defined as the action of a certain subgroup of the centralizer of a polarity
of a mixed Moufang hexagon H(K, Kθ) on the corresponding set of absolute
points. A more precise and explicit description based on Section 7.7 of [36]
goes as follows.

For a, a′, a′′ ∈ K, we put

f1(a, a′, a′′) = −a4+2θ − aa′′θ + a1+θa′θ + a′′2 + a′1+θ − a′a3+θ − a2a′2,

f2(a, a′, a′′) = −a3+θ + a′θ − aa′′ + a2a′,

f3(a, a′, a′′) = −a3+2θ − a′′θ + aθa′θ + a′a′′ + aa′2.

Let X be the following set of points of PG(6, K), given with coordinates
with respect to some given basis:

X ={(1, 0, 0, 0, 0, 0, 0)}∪
{(f1(a, a′, a′′),−a′,−a,−a′′, 1, f2(a, a′, a′′), f3(a, a′, a′′)) | a, a′, a′′ ∈ K}.
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Let (x, x′, x′′)∞ be the collineation of PG(6, K) determined by (x0 x1 x2 x3 x4 x5 x6) /→

(x0 x1 x2 x3 x4 x5 x6)

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0
p 1 0 −x 0 x2 −x′′ − xx′

q xθ 1 x′ − x1+θ r s
x′′ 0 0 1 0 x −x′

f1(x, x′, x′′) −x′ −x −x′′ 1 f2(x, x′, x′′) f3(x, x′, x′′)
x′ − x1+θ 0 0 0 0 1 −xθ

x 0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with

p = x1+θ − x′θ − xx′′ − x2x′,

q = x′′θ + xθx′θ + x′x′′ − xx′2 − x2+θx′ − x1+θx′′ − x3+2θ,

r = x′′ − xx′ + x2+θ,

s = x′2 − x1+θx′ − xθx′′,

and put (x, x′, x′′)0 := (x, x′, x′′)g
∞, with g the collineation of PG(6, K)

determined by

(x0 x1 x2 x3 x4 x5 x6) /→ (x0 x1 x2 x3 x4 x5 x6)

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 −1 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The group Ree(K, θ) is generated by the subgroups

U+
∞ = {(x, x′, x′′)∞ | x, x′, x′′ ∈ K} and U+

0 = {(x, x′, x′′)0 | x, x′, x′′ ∈ K}.

Both subgroups U+
∞ and U+

0 indeed act on X , as the reader can verify
with a straightforward, but tedious computation, and they act regularly on
X \ {(1, 0, 0, 0, 0, 0, 0)} and X \ {(0, 0, 0, 0, 1, 0, 0)}, respectively. Moreover,
it can be checked that (U+

0 )(x,x′,x′′)∞ = (U+
∞)(y,y′,y′′)0 , with

y = −f3(x, x′, x′′)

f1(x, x′, x′′)
,

y′ = −f2(x, x′, x′′)

f1(x, x′, x′′)
,

y′′ = − x′′

f1(x, x′, x′′)
.



3.3. Proof of the uniqueness of splittings of some split BN pairs of rank one47

It now follows that we indeed obtain a Moufang set. When emphasizing
one particular point, namely (∞) := (1, 0, 0, 0, 0, 0, 0), we can write, following
7.7.7 of [36],

(a, a′, a′′) := (f1(a, a′, a′′),−a′,−a,−a′′, 1, f2(a, a′, a′′), f3(a, a′, a′′)),

and the unique element of U+
∞ that maps (0, 0, 0) to (b, b′, b′′) is given by

(b, b′, b′′)∞ : (a, a′, a′′) /→ (a + b, a′ + b′ + abθ, a′′ + b′′ + ab′ − a′b − ab1+θ).

The root group U+
∞ is now the set {(a, a′, a′′)∞ | a, a′, a′′ ∈ K} with operation

(a, a′, a′′)∞ ⊕ (b, b′, b′′)∞ = (a + b, a′ + b′ + abθ, a′′ + b′′ + ab′ − a′b − ab1+θ)∞.

3.3 Proof of the uniqueness of splittings of
some split BN pairs of rank one

3.3.1 general idea

We investigate the action of an automorphism ϕ lying in a transitive nilpotent
subgroup U∞ of the stabilizer of (∞) in a projective group of every described
Moufang set.

Lemma 3.3.1. If Ux and Vx are two transitive normal nilpotent subgroups
of Gx, then so is Ux · Vx

Proof. The transitivity and the fact that Ux · Vx is normal, is obvious. The
nilpotency of Ux · Vx follows from the normality of UX and Vx in Gx:

[uv, u′v′] = [u, v′]v[v, v′][u, u′]vv′ [v, u′]v
′

So we have that:

[U [i] · V [j], U · V ] ≤ (U [i+1] · V ) ∩ (U · V [j+1])

[U ∩ V [i], U · V ] ≤ (U [1] ∩ V [i]) · (V [i+1] ∩ U)

[(U [i] ∩ V [j−1]) · (V [j] ∩ U), U · V ] ≤ (U [i+1] ∩ V [j−1]) · (V [j] ∩ U)

these identities imply that UV is nilpotent (using induction).

So to prove the uniqueness of the splitting, we may assume that U∞
contains U+

∞ and has a non-trivial stabilizer (U∞)0

Since U+
∞ acts regularly on X \ {∞}, we may assume this automorphism

fixes both 0 and ∞. The nilpotency of U∞ ensures that its center is not



48 3. BN-pairs

trivial, but since ϕ fixes 0 it fixes also its orbit under the center of U∞, our
main goal now is to show that Z(U∞) is big enough, so that ϕ has to be the
identity

A distinction is made between translation Moufang sets (for which there
is always a sub-Moufang set isomorphic to a projective line or a polar line)
and the other Moufang sets.

For one well understood case, the group U+
∞ is not the unique transitive

nilpotent group. All the Moufang sets arising from Moufang buildings are
discussed here (except for one Moufang set lying in the building of type F4)

3.3.2 proof

Moufang sets with commutative root groups The Moufang sets intro-
duced in Section 3.2 that have commutative root groups are those isomorphic
to a sub Moufang set of a projective line over a (skew) field (which we shall
refer to as semi projective lines (over a (skew) field), the hexagonal and
orthogonal Moufang sets, and the projective lines over proper alternative
division rings. We treat all these cases simultaneously. Note that we also
include some other type of Moufang sets with commutative root groups, and
contained in a projective line over a field in characteristic 2, see [12], not
explicitly mentioned here.

So let M = (X, (U+
x )x∈X) be a Moufang set with commutative root groups

as in the previous paragraph. Each of these Moufang sets is defined using
(or “over”) a field K. We choose arbitrarily two elements of X and call them
0 and ∞. Then U+

∞ is an abelian group and we denote the composition law
in this group by +. Let G be any projective group of M.

Suppose U∞ is a second unipotent subgroup of G, contained in G∞. Since
the product of two normal nilpotent subgroups is nilpotent (see Lemma 3.3.1),
we may assume without loss of generality that U+

∞ " U∞. Since U+
∞ acts

sharply transitively on the set X \ {∞}, there exists ϕ ∈ U∞ fixing some
element of X , and we may assume without loss of generality that ϕ fixes 0.

Let z be a nontrivial element of the center of U∞, and let u ∈ U+
∞ be

such that zu fixes 0. Since zu centralizes U+
∞, it must fix X pointwise, hence

z = u−1. In all cases, the three elements 0, 0z and ∞ are contained in a
semi projective line over a field F. Without loss of generality, we may put
0z equal to the multiplicative identity element 1 of F. Indeed, we pass to
the new multiplication a · b = a(0z)−1b if necessary. Moreover, in the case of
hexagonal Moufang sets and projective lines over alternative division rings,
we may assume that 1 is the identity element of the division algebra (this
amounts to passing to an isotopic algebra; the Moufang sets do not change).
Hence z maps 0 to 1, i.e., u : x /→ x + 1. Now let a ∈ X \ {0, 1,∞} be
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arbitrary. Then 0, 1,∞ and a are contained in a semi projective line over
some skew field F′. The restriction to the points of X of the addition with
respect to ∞ in F′ coincides with the + of our root group. Since we are in a
skew field now, the double µ-actions are well defined; hence a2 is well defined
in particular (and one can check that it is independent of the chosen sub
Moufang set by considering the intersection of all of them). Since the center
is a characteristic subgroup of U∞, it is normal in G∞, and since G contains
the little projective group, it contains all double µ-actions with respect to
(U+

∞, U+
0 , 1, a), for every a ∈ X \ {0,∞}. It follows that x /→ x + a2 also

belongs to the center of U∞, and hence ϕ fixes all squares in X .
First suppose that the characteristic of K is not equal to 2. Then every

a ∈ X can be written as a = 1
4
((a+1)2−(a−1)2). Note that a+1, a−1 ∈ X ,

and so x /→ x+(a+1)2 − (a−1)2 belongs to the center of U∞. Applying now
the double µ-action with respect to (U+

∞, U+
0 , 1, 1/2), we see that x /→ x + a

belongs to the center of U∞, and hence ϕ must fix all a ∈ X , a contradiction.
Next suppose that K has characteristic 2. Define U [0]

∞ := U∞, U [j]
∞ :=

[U∞, U [j−1]
∞ ] for j ≥ 1 and take i such that U [i]

∞ does not act freely on X \{∞},
but U [i+1]

∞ does (i exists by nilpotency of U∞). We may assume that ϕ ∈ U [i]
∞.

We prove some properties of ϕ.

Observation 3.3.2. The map ϕ is additive, i.e., for all a, b ∈ X, we have
(a + b)ϕ = aϕ + bϕ.

Proof. Denote U+
∞ ∋ ta : x /→ x + a, a ∈ X \ {∞}. We have (tatb)ϕ = tϕa tϕb

and 0tϕa = aϕ, so tϕa = taϕ . We get (ta+b)ϕ = (tatb)ϕ = tϕa tϕb = taϕtbϕ. Taking
the image of 0 , we obtain the result.

Observation 3.3.3. For all a, b ∈ X such that {0, 1, a, b,∞} is contained in
a semi projective line over some skew field L with the property that ϕ fixes
the multiplicative identity 1, we have (aba)ϕ = aϕbϕaϕ (where juxtaposition
is multiplication in the skew field L). Consequently, (a−1)ϕ = (aϕ)−1 =: a−ϕ.

Proof. Denote the element of U+
0 mapping a to ∞ by t′a, and use the notation

ta of the previous proof, too. By definition the double µ-action µa := x /→ axa
is equal to the product t1t′1t1tat

′
ata. As before, tϕa = taϕ and t′ϕa = t′aϕ. We

now have, remembering that ϕ fixes 1:

(aba)ϕ = bµaϕ = bt1t′1t1tat′ataϕ = (bϕ)(t1t′1t1tat′ata)ϕ

= (bϕ)t1t′1t1taϕ t′aϕtaϕ = (bϕ)µaϕ = aϕbϕaϕ.

So the first assertion is proved. Now put b = a−1 and the second assertion
follows.



50 3. BN-pairs

For every b ∈ X , we have [ϕ, tb] = tb+bϕ and by nilpotency of U∞ and the
fact that ϕ cannot centralize U+

∞, there exists b ∈ X with b ̸= bϕ such that
[ϕ, tb+bϕ] = 1 and tb+bϕ ̸= 1. So we have (b + bϕ)ϕ = b + bϕ, implying bϕ2

= b.
Now [ϕ, U [i]] acts freely on X \ {∞}. Denote as above, for a ∈ X , the

double µ-action x /→ axa by µa. Then [µaϕ−1µ−1
a ,ϕ−1] acts freely on X\{∞},

and since both ϕ and µa fix 0, we get [µaϕ−1µ−1
a ,ϕ−1] = id. Now we claim

that in all cases except for M orthogonal, the set {0, 1, b, bϕ,∞} is contained
in a semi projective line over some skew field F. This is trivial if M is itself
a semi projective line. If it is a projective line over a proper alternative
division ring, then this follows from the fact that every two elements in such
a division ring generate an associative division ring. If M is a hexagonal
Moufang set, then use [(30.6) and (30.17)] of [35]. The claim follows. If M is
an orthogonal Moufang set, then, as is noted in [2], {0, b, bϕ,∞} is contained
in a sub Moufang set isomorphic to a projective line over a field, which we
can also denote by F (and which is isomorphic to a quadratic extension of
K). If this sub Moufang set does not contain the element 1 chosen before,
then we can re-choose it as b + bϕ. It is fixed under ϕ.

We now calculate, using the multiplication in F, and taking into account
bϕ2

= b, and Observation 3.3.3,

b−1 = (b−1)[µbϕ
−1µ−1

b ,ϕ−1] = bϕµ−1
b ϕµbϕ−1µ−1

b ϕ

= (b−1)ϕ−1
bϕ−2

(b−1)ϕ−1
bb−1b(b−1)ϕ−1

bϕ−2
(b−1)ϕ−1

= cbc,

where c = b−ϕbb−ϕ. So we have cbc = b−1, which implies (cb)2 = 1. Since
charK = 2, we obtain cb = 1. Hence 1 = b−1cb2. But b2 = (b2)ϕ = (bϕ)2

(since ϕ fixes all squares and then use the first assertion of Observation 3.3.3),
and we obtain 1 = b−1b−ϕbbϕ, resulting in bbϕ = bϕb.

But now (b + bϕ)2 = b2 + (bϕ)2 + bbϕ + bϕb = b2 + b2 = 0, hence b = bϕ, a
contradiction. Hence ϕ is already the identity and U∞ = U+

∞.

Hermitian Moufang sets Let Ξ = (K,K0,σ, L0, q) be a proper anisotropic
pseudo-quadratic space as defined before (see also (11.17) of [35]), with cor-
responding skew-hermitian form f : L0 × L0 → K. By (21.16) of[35], we
may assume that q is non-degenerate, i.e. {a ∈ L0 | f(a, L0) = 0} = 0.
Let (T, ·) be as in Subsection 3.2.6. Then the group U+

∞ is isomorphic to
T , and acts in a natural way on T itself by right multiplication; we will
write τ(a,t) for the element of U+

∞ mapping (b, v) ∈ T to (b, v) · (a, t). Then
Z(U+

∞) = {τ(0,t) | t ∈ K0}. We will also write T ∗ for T \ {(0, 0)}. In general,
we write a superscript ∗ when we delete the 0-element of a set (0-vector,
additive identity,. . . ).
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As before, let U+
∞ " U∞. For convenience we shall write U = U∞ and

U+ = U+
∞. Also, put B := G∞. Since U+ ! B and U ≤ B, we have that

Z(U+) ! B and Z(U+) ! U . Let Ũ := U/Z(U+), Ũ+ := U+/Z(U+), and
B̃ := B/Z(U+). Then Ũ+ " Ũ , and Ũ is a non-trivial nilpotent group; in
particular, Z̃ := Z(Ũ) ̸= 1. For every a ∈ L0, we let τa := τ(a,q(a))Z(U+) ∈
Ũ+; then the map a /→ τa is an isomorphism from (L0, +) to Ũ+. Note that
Ũ+ ̸= 1 by the properness of Ξ. The natural action of B on T induces an
action of B̃ on L0. Since Ũ+ acts regularly on L0, there exists an element ϕ
in Ũ \ Ũ+ fixing 0 ∈ L0. Then ϕ fixes the orbit 0Z̃ elementwise.

Since [Ũ+, Ũ ] ≤ Ũ+, it follows from the nilpotency of Ũ that there exists
a non-trivial element τ ∈ Ũ+ ∩ Z̃. Moreover, Z̃ ! B̃; for every (a, t) ∈ T ∗,
the mapping

µa,t : b /→
(
b − at−1f(a, b)

)
tσ ,

for all b ∈ L0, belongs to B̃. (See (33.13) of [35].) Let F := {c ∈ L0 | τc ∈ Z̃}.
Then F is a non-trivial additive subgroup of L0 such that µ(a,t)(F ) ⊆ F for
all (a, t) ∈ T ∗. If we can now show that F = L0, then it would follow that
ϕ = 1, which is a contradiction; hence it would follow that U = U+, which
is we want to obtain. We will see that there is one exception for which there
really exists U ̸= U+.

We start by making some observations about the maps µ(a,t). Let b ∈ L∗
0

be fixed. If (a, t) ∈ T ∗ is such that f(a, b) = 0, then we have

µ(a,t)(b) = btσ ; (3.1)

in particular, if t ∈ K0, then µ(0,t)(b) = btσ = bt, since K0 ≤ FixK(σ), and
hence F is closed under right multiplication by K0.

Lemma 3.3.4. If F is a non-trivial K-subspace of L0, then F = L0.

Proof. Suppose that F is a non-trivial K-subspace of L0.
Let b ∈ F ∗ be fixed, let a ∈ L∗

0 be arbitrary, and let t = q(a); then
(a, t) ∈ T ∗. If f(a, b) ̸= 0, then b − µ(a,t)(b)t−σ = at−1f(a, b) ∈ F , and hence
a ∈ F . So assume that f(a, b) = 0. Since q is non-degenerate, there exists a
c ∈ L0 such that f(c, b) ̸= 0, and hence also f(a + c, b) = f(c, b) ̸= 0. Hence
c ∈ F and a+c ∈ F , so also in this case we have that a = (a+c)−c ∈ F .

If K0 generates K (as a ring), then it follows from the fact that F is
closed under right multiplication by K0, that F is a K-subspace of L0. So
we may assume that K0 does not generate K as a ring. By (23.23) in [35],
this implies that K0 is a commutative field, and either K/K0 is a separable
quadratic extension and σ is the non-trivial element of Gal(K/K0), or K is
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a quaternion division algebra over K0 and σ is the standard involution of K.
Let N and T denote the (reduced) norm and trace of K/K0, respectively.

Assume first that dimK L0 = 1; we will, in fact, identify L0 and K in this
case. Let ρ := q(1) ∈ K\K0; then q(t)+K0 = tσρt+K0 = tσ(ρ+K0)t for all
t ∈ K. Also, f(1, 1) = γ := ρ − ρσ, and hence f(s, t) = sσγt for all s, t ∈ K.
One can now compute that

µ(t,tσ(ρ+c)t)(s) = (s − t(tσ(ρ + c)t)−1f(t, s))(tσ(ρ + c)t)σ

= (1 − (tt−1)(ρ + c)−1((tσ)−1tσ)γ)stσ(ρ + c)σtσ

= (ρ + c)−1(ρ + c + ρ − ρσ)stσ(ρ + c)σt

= (ρ + c)−1(ρ + c)σstσ(ρ + c)σt

for all s, t ∈ K∗ and all c ∈ K0. Since N(ρ + c) = (ρ + c)(ρ + c)σ ∈ K0, it
follows that, for all s ∈ F ∗, (ρσ + c)2stσ(ρσ + c)t ∈ F as well, and hence

r2stσrt ∈ F , for all r ∈ ⟨1, ρ⟩K0 and all t ∈ K . (3.2)

Suppose first that K/K0 is a separable quadratic extension; then K is
commutative, and K = ⟨1, ρ⟩K0 . Hence, by (3.2), r3s ∈ F for all r ∈ K.
If K0 = GF(2), then K = GF(4), and then r3 ∈ K0 for all r ∈ K (this is
the case which will lead to the exception). So assume that |K0| ≥ 3, and
suppose that K3 ⊆ K0. Since K = K0(ρ) is a quadratic extension field of
K0, we have ρ2 = aρ + b for some a, b ∈ K0. Then ρ3 = (a2 + b)ρ + ab, hence
a2 + b = 0, and therefore ρ2 − aρ + a2 = 0. If char(K) = 3, then this would
imply (ρ + a)2 = 0 and thus ρ = −a ∈ K0, a contradiction. If char(K) ̸= 3,
then (ρ + t)3 − ρ3 − 1 = 3ρt(ρ + t) ∈ K0, and therefore ρ(ρ + t) ∈ K0 for all
t ∈ K∗

0 . Choose a t ∈ K0 \ {0,−1}; then ρ = ρ(ρ + (t + 1)) − ρ(ρ + t) ∈ K0,
again a contradiction. We conclude that K3 ̸⊆ K0, and hence F = K.

Suppose now that K is a quaternion division algebra over K0; in partic-
ular, K0 is an infinite commutative field. If we consider (3.2) with r = ρ + c
for some c ∈ K0 \{0} = Z(K)∗, subtract the same expression with r = ρ and
r = c, and divide by c, then we get that

ρ(ρ + 2c)N(t)s + (c + 2ρ)stσρt ∈ F ,

for all c ∈ K∗
0 . If char(K) = 2, then it follows that ρ2N(t)s + cstσρt ∈ F , for

all c ∈ K∗
0 , and hence stσρt ∈ F for all t ∈ K. If char(K) ̸= 2, then we write

ρ2 = aρ+b with a, b ∈ K0; if we take r = ρ−a/2 in (3.2), then we obtain that
stσρt ∈ F for all t ∈ K since r2 ∈ K∗

0 and stσ(a/2)t ∈ sK0 ⊆ F . So we have
shown that, in all characteristics, F is invariant under right multiplication by
elements of the set K0 ∪ {tσρt | t ∈ K}. It remains to show that the subring
generated by K0 ∪ {tσρt | t ∈ K} is K. Suppose that

K1 := ⟨K0 ∪ {tσρt | t ∈ K}⟩ring ̸= K .
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Since every subring of K containing K0 is a K0-vector space of dimension
1, 2 or 4, and since ρ ̸∈ K0, we must have dimK0 K1 = 2; hence we can
find a t ∈ K \ K1 for which T(t) = 0 and T(ρt) ̸= 0. Then tσ = −t and
ρt = −tσρσ + r for some r ∈ K∗; hence

tσρt = −t(−tσρσ + r) = tσt · ρσ − t · r ̸∈ K1 ,

a contradiction. So K1 = K, and hence F = K in this case as well.
Now suppose that dimK L0 ≥ 2. If K is a quaternion division algebra

over K0 or if K is a quadratic extension field over K0 with K0 ̸= GF(2), then
it follows from the result in dimension 1 that F is a K-subspace of L0, and
hence F = L0 by Lemma 3.3.4. It only remains to consider the case where
K0 = GF(2) and K = GF(4).

Let b ∈ F \ {0} be arbitrary. Since dimK L0 ≥ 2, there exists an a ∈ L∗
0

such that f(a, b) = 0; by (3.1), bq(a)σ ∈ F . Since q is anisotropic, q(a)σ ̸∈ K0,
and it thus follows that bK ∈ F . This shows that F is a K-subspace of L0,
and we can again conclude by Lemma 3.3.4 that F = L0.

We will now describe the exception. So let K0 = GF(2), let K = GF(4),
and let dimK L0 = 1; we will again identify L0 and K = GF(4). Then
ρ := q(1) is one of the two elements in K\K0, and f(1, 1) = γ := ρ−ρσ = 1;
hence f(s, t) = sσt for all s, t ∈ K. Then U+ ∼= T is a group of order 8. In the
case that the projective group is PΣU(3, 2), we have B+ = T · Gal(K/K0),
which is a group of order 16. If we take U = B+, then U is of course a normal
subgroup of B+, but U is also nilpotent (since it is a 2-group) and transitive
(since U+ is already transitive), giving us the desired exception to the Main
Theorem.

Exceptional Moufang sets of type E7 We now consider the case of the
Moufang sets arising from a Moufang quadrangle of type E6, E7 or E8. In
fact, we have already handled E6 and E7, since these correspond to Hermitian
Moufang sets, but our approach does not make any distinction between these
three cases.

Let (K, L0, q) be a quadratic space of type E6, E7 or E8 as defined in
[35](12.31), with corresponding bilinear form f : L0 ×L0 → K and with base
point ϵ ∈ L∗

0. Let X0 be the vector space over K and (a, v) /→ av be the
map from X0 × L0 → X0 as defined in [35](13.9). Let h be the bilinear map
from X0 × X0 to L0 defined in [35](13.18) and (13.19), let g be the bilinear
map from X0×X0 to K defined in (13.26) of [35], and let π be the map from
X0 to L0 as defined in [35](13.28). Moreover, let π(a, t) := π(a) + tϵ for all
(a, t) ∈ X0. Following (16.6) of [35], let (S, ·) be the group with underlying
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set X0 × K and with group operation

(a, t) · (b, u) = (a + b, t + u + g(a, b))

for all (a, t), (b, u) ∈ S. Then the group U+ := U+
∞ is isomorphic to S, and

acts in a natural way on S itself by right multiplication; we will write τ(a,t)

for the element of U+ mapping (b, v) ∈ S to (b, v) · (a, t). Then Z(U+) =
{τ(0,t) | t ∈ K}.

Let U be a second unipotent subgroup in G∞, and assume, as before,
U+ ≤ U .

Exactly as in section 3.3.2, we let Ũ := U/Z(U+), Ũ+ := U+/Z(U+),
B̃ := B/Z(U+), and Z̃ := Z(Ũ) ̸= 1. For every a ∈ X0, we let τa :=
τ(a,0)Z(U+) ∈ Ũ+; then the map a /→ τa is an isomorphism from (X0, +) to
Ũ+. The natural action of U on S induces an action of Ũ on X0. Since Ũ+

acts regularly on X0, there exists an element ϕ in Ũ \ Ũ+ fixing 0 ∈ X0,
and hence fixing the orbit 0Z̃ elementwise. Again, there exists a non-trivial
element τ ∈ Ũ+ ∩ Z̃. For every (a, t) ∈ S∗, the mapping

µa,t : b /→ bπ(a, t) + ah(b, a) − f(h(b, a),π(a, t))

q(π(a, t))
aπ(a, t) ,

for all b ∈ X0, belongs to B̃. (The computation of this expression requires
some calculation, similar to the other cases in [35](Chapter 33). Observe also
that q(π(a, t)) ̸= 0 by (13.49)[35].) Let F := {c ∈ X0 | τc ∈ Z̃}. Then F is a
non-trivial additive subgroup of X0 such that µ(a,t)(F ) ⊆ F for all (a, t) ∈ S∗.
We will again show that F = X0 to obtain the required contradiction.

First of all, observe that it follows from the fact that µ(0,t)(b) = tb for all
t ∈ K and all b ∈ X0 that F is a K-subspace of X0.

Lemma 3.3.5. Let b ∈ X∗
0 . If b ∈ F , then bπ(b) ∈ F .

Proof. Let b ∈ F . Then, for all t ∈ K, also µb,t(b) ∈ F , that is,

µb,t(b) =

(
1 − f(h(b, b),π(b, t))

q(π(b, t))

)
bπ(b, t) + bh(b, b) ∈ F . (3.3)

Note that h(b, b) = 2π(b) if char(K) ̸= 2 and that h(b, b) = f(π(b), ϵ)ϵ if
char(K) = 2, by [35]((13.28) and (13.45)). Also observe that we have already
shown that b · sϵ ∈ F for all s ∈ K.

Assume first that char(K) ̸= 2. Then it follows from (3.3) that

(
3 − f(2π(b),π(b, t))

q(π(b, t))

)
bπ(b) ∈ F ,
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for all t ∈ K, and it is easily checked that this expression is zero if and only
if q(π(b)) = 3t2. Choose any t for which q(π(b)) ̸= 3t2; then it follows that
bπ(b) ∈ F since F is a K-subspace of X0.

Now assume that char(K) = 2. It now follows from (3.3) that
(

1 +
f(f(π(b), ϵ)ϵ,π(b, t))

q(π(b, t))

)
bπ(b) ∈ F ,

for all t ∈ K, and this expression is zero if and only if

t2 + f(π(b), ϵ)t + q(π(b)) + f(π(b), ϵ)2 = 0 .

This quadratic equation has at most 2 solutions; let t be any element of K
which is not a solution of this equation. Then it follows that bπ(b) ∈ F in
this case as well.

Lemma 3.3.6. Let b ∈ X∗
0 . If there exist elements s, t ∈ K, not both zero,

such that b(sπ(b) + tϵ) ∈ F , then b ∈ F .

Proof. Let b ∈ X∗
0 and s, t ∈ K (not both zero) be such that b(sπ(b) +

tϵ) ∈ F . If s = 0, then t ̸= 0, and then tb ∈ F , hence b ∈ F . So as-
sume that s ̸= 0; then bπ(b, s−1t) ∈ F . Assume without loss of generality
that s = 1. It is shown in the proof of (13.67) in [35] that π(bπ(b, t)) =
q(π(b, t))π(b). By (13.49) [35], q(π(b, t)) ̸= 0. If we now apply Lemma 3.3.5
on the element bπ(b, t) ∈ F , then we get that bπ(b, t)π(b) ∈ F , and since
π(b, t) = f(ϵ,π(b, t))ϵ − π(b, t), it also follows that bπ(b, t)π(b, t) ∈ F . But
bπ(b, t)π(b, t) = q(π(b, t))b by [35, (13.7)], so b ∈ F , and we are done.

As in [35, (13.42)], we define P (a, b) := f(h(a, b), ϵ) for all a, b ∈ X0; then
P is an alternating bilinear form, which is non-degenerate. (This form is
called F in [35], but we choose P to avoid confusion with our set F .)

Lemma 3.3.7. Let a, b ∈ X∗
0 . If b ∈ F and P (b, a) ̸= 0, then a ∈ F .

Proof. Let a ∈ X∗
0 and let b ∈ F such that P (b, a) ̸= 0. Then for all s, t ∈ K,

we have that µa,t(b) − µa,s(b) ∈ F . It follows that

f(h(b, a),π(a, s))

q(π(a, s))
aπ(a, s) − f(h(b, a),π(a, t))

q(π(a, t))
aπ(a, t) ∈ F ,

for all s, t ∈ K. Let x := f(h(b, a),π(a)) ∈ K and let y := P (b, a) ∈ K∗; then
this can be rewritten as

(
x + sy

q(π(a, s))
− x + ty

q(π(a, t))

)
aπ(a) +

(
s

x + sy

q(π(a, s))
− t

x + ty

q(π(a, t))

)
a ∈ F .
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By [35, (13.41)], a and aπ(a) are linearly independent. On the other hand,
since y ̸= 0, there exists only one element s ∈ K for which x + sy = 0. If we
now choose s ̸= t such that x + sy ̸= 0 and x + ty ̸= 0, then the expression
above cannot be zero, and hence we have found constants c, d ∈ K, not both
zero, such that a(cπ(a) + dϵ) ∈ F . It follows from Lemma 3.3.6 that a ∈ F ,
which is what we had to show.

We are now in a position to show that X0 = F . We already know that
F is non-trivial, so choose some fixed element b ∈ F ∗. Now let c ∈ X∗

0 be
arbitrary. If P (b, c) ̸= 0, then c ∈ F by Lemma 3.3.7. If P (b, c) = 0, then
choose an element a ∈ X0 such that P (b, a) ̸= 0 (such an element exists since
P is non-degenerate). But now the elements a and a + c both satisfy the
hypotheses of Lemma 3.3.7, and hence they both belong to F . It follows that
also c = (a + c) − a belongs to F , and hence we have shown that X0 = F .

Suzuki-Tits Moufang sets We start with some observations. We use the
notation of Subsection 3.2.8.

Observation 3.3.8. The mapping x /→ x1+θ induces a permutation of L.
Also, the Tits endomorphism x /→ xθ is a bijection from L onto Lθ.

Proof. Indeed, if x ∈ L, then xθ ∈ Lθ ⊆ Kθ, so x1+θ = xθx ∈ KθL = L.
Moreover, for given nonzero u ∈ L, the element uθ−1 is mapped onto uθ

u .u2

uθ =
u. Since u−1 ∈ L, also uθ−1 = uθu−1 ∈ L. The mapping x /→ x1+θ is injective
since x /→ xθ−1 is its inverse.

If xθ = yθ, then applying θ, we get x2 = y2, so x = y.

Observation 3.3.9. For each nonzero t ∈ Lθ, the mapping ht fixing (∞)
and mapping (a, a′) onto (ta, t1+θa′) belongs to Sz(K, L, θ).

Proof. This follows from a calculation similar to one culminating in the for-
mulae of (33.17) of [35], using the matrices in Subsection 3.2.8.

Observation 3.3.10. For |K| = 2, every projective group of MSz(K, K, id)
is isomorphic to the little projective group G. Also, in this Moufang set the
stabilizer G∞ related to (∞) is isomorphic to U+

∞ and hence this Moufang set
has unique transitive nilpotent normal subgroups.

Proof. This readily follows from the well known fact that, in this case, the
Moufang set is a Frobenius group of order 20 acting on 5 elements, and
that this group is a maximal subgroup of the full symmetric group on five
letters.
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From now on, we may assume that |K| ≥ 8. The following observation is
well known for the classical case L = K.

Observation 3.3.11. The center Z+
∞ of U+

∞ coincides precisely with the set
of elements of U+

∞ of order less than or equal to 2. The orbit of (0, 0) under
Z+

∞ is equal to {(0, a′) | a′ ∈ L}, while the orbit of (∞) under the center Z+
0

of U+
0 is equal to {(a, 0) | a ∈ L∗} ∪ {(∞)}.

Proof. An easy and straightforward computation shows that Z+
∞ = {(0, a′)∞ |

a′ ∈ L}, and also that (a, a′)∞ has order two if and only if a = 0 and a′ ̸= 0.
Using the matrices of Subsection 3.2.8, one now sees that Z+

0 = {(0, x′)0 |
x ∈ L}, but the element (0, a−1−θ)0 maps (1, 0, 0, 0) to (1, (a−1−θ)θ, 0, a−1−θ),
which coincides with (a2+θ, 1, 0, a) = (a, 0).

Our Main Result will strongly depend on the following lemma.

Lemma 3.3.12. Let ϕ be an automorphism of the Moufang set MSz(K, L, θ)
fixing (∞) and all elements (0, a′) with a′ ∈ Lθ. Then ϕ is necessarily the
identity.

Proof. By the definition of automorphism, the permutation ϕ normalizes U+
∞,

and hence also Z+
∞. Likewise, it normalizes Z+

0 . Using Observation 3.3.11,
this immediately implies that ϕ stabilizes the sets {(0, a′) | a ∈ L} and
(a, 0) | a ∈ L. Hence we may write (a, 0)ϕ = (aϕ1 , 0), with ϕ1 a permutation
of L fixing 0, and (0, a′)ϕ = (0, a′ϕ2), with ϕ2 a permutation of L fixing Lθ

pointwise. Since ϕ fixes (0, 0), we may interpret the foregoing formulae as
conjugation of elements of U+

∞ with ϕ. Hence, we obtain

(a, a′)ϕ
∞ = (a, 0)ϕ

∞ ⊕ (0, a′)ϕ
∞ = (aϕ1 , a′ϕ2)∞.

We now use the fact that ϕ induces an automorphism of U+∞ by conju-
gation. The equality (a, 0)ϕ

∞ ⊕ (b, 0)ϕ
∞ = (a + b, abθ)ϕ

∞ translates implies

aϕ1(bϕ1)θ = (abθ)ϕ2 (3.4)

Putting a = 1, and taking into account that bθ ∈ Lθ is fixed by ϕ2, we see
that 1ϕ1(bϕ1)θ = bθ. Putting b = 1, this implies 1ϕ1(1ϕ1)θ = 1, hence 1ϕ1 = 1
by Observation 3.3.8. The previous equality now gives us (bϕ1)θ = bθ. Again
using Observation 3.3.8 we conclude ϕ1 = id.

Now putting b = 1 in Equation (3.4), we deduce aϕ1 = aϕ2 . The assertion
now follows.

Theorem 3.3.13. Let G be an arbitrary projective group of MSz(K, L, θ),
and let U∞ be a unipotent subgroup of G. Then U∞ ≡ U+

∞.
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Proof. We may assume U+
∞ ≤ U∞. Let u ∈ Z(U∞). Then u acts fixed point

freely on X \{(∞)}, and it commutes with every element of U+
∞. Identifying

the element (a, a′) with the group element (a, a′)∞, and noting that the action
of U+

∞ can hence be identified with the right action on itself, the action of u
can be described as left action on U+

∞. So, if u maps (0, 0) onto (c, c′), then
we may write u : (a, a′)∞ /→ (c, c′)∞ ⊕ (a, a′)∞. Hence, if c ̸= 0, then the
map ϕ : (a, a′)∞ /→ (c, c′)∞ ⊕ (a, a′)∞ ⊕ (c, c′ + c1+θ)∞ is nontrivial, belongs
to U∞ and fixes all elements of the form (0, a′), with a′ ∈ L. This contradicts
Lemma 3.3.12.

So c = 0. Considering the isomorphic Moufang set MSz(K, Lc′−1, θ), we
may assume that c′ = 1. Since the center of U∞ is invariant under each
mapping ht, t ∈ Lθ. Observation 3.3.9 implies that (0, tθ)∞ ∈ Z(U∞). If
U∞ ̸= U+

∞, then there exists a nontrivial element ϕ ∈ U∞ fixing (0, 0). Since
ϕ commutes with (0, tθ), t ∈ L, it fixes all elements (0, tθ), with t ∈ L.
Lemma 3.3.12 shows that ϕ is the identity, a contradiction. Hence U∞ must
coincide with U+

∞.
The theorem is proved.

Ree-Tits Moufang sets We start again with some observations, using
the notation of Subsection 3.2.9.

Observation 3.3.14. The mapping x /→ x2+θ is a permutation of K, induc-
ing a permutation of K2. Also, the Tits endomorphism x /→ xθ is a bijection
from K onto Kθ. Finally, the set {t1+θ | t ∈ K} contains K2.

Proof. The inverse of x /→ x2+θ is given by x /→ x2−θ, for x ̸= 0, and 0 /→ 0.
Also, if xθ = yθ, then applying θ, we get x3 = y3, so x = y.
Finally, for any x ∈ K, the element (x−1+θ)1+θ is the arbitrary but pre-

scribed square x2 ∈ K2, which proves the last assertion.

Observation 3.3.15. For each nonzero t ∈ K, the mapping ht fixing (∞)
and mapping (a, a′, a′′) onto (tθ−1a, t2a′, t1+θa′′) belongs to Ree(K, θ).

Proof. The subgroups {(0, x′, 0)∞ | x′ ∈ K} ≤ U+
∞ and {(0, x′, 0)0 | x′ ∈

K} ≤ U+
0 preserve the set {(0, a′, 0) | a′ ∈ K} ∪ {(∞)}, inducing a Moufang

set M′ isomorphic to a projective line over K. Using the matrices above
related to the mapping (0, x′, 0)∞ and (0, x′, 0)0, one now calculates that the
mapping (0, a′, 0) /→ (0, t2a′, 0), for any t ∈ K∗, which belongs to M′, acts
on X as ht.

Observation 3.3.16. The center Z+
∞ of U+

∞ consists precisely of the elements
(0, 0, a′′)∞, with a′′ ∈ K. Also, the elements of U+

∞ of order less than or equal
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to 3 form a subgroup V +
∞ = {(0, a′, a′′) | a′, a′′ ∈ K} which coincides precisely

with the commutator subgroup [U+
∞, U+

∞], and also with the set of elements
u ∈ U+

∞ satisfying [u, U+
∞] ≤ Z+

∞. The orbit of (0, 0, 0) under Z+
∞ is equal to

{(0, 0, a′′) | a′′ ∈ K}, while the orbit of (∞) under the center Z+
0 of U+

0 is
equal to {(a, 0,−a2+θ) | a ∈ K∗} ∪ {(∞)}.

Proof. The first assertion follows from an easy and straightforward compu-
tation using the operation ⊕ introduced above.

The second assertion follows from the identities

(a, a′, a′′)∞ ⊕ (a, a′, a′′)∞ ⊕ (a, a′, a′′)∞ = (0, 0,−a2+θ)∞

and

[(a, a′, a′′)∞, (b, b′, b′′)∞] = (0, abθ−aθb, ab1+θ−a1+θb+aθb2−a2bθ+a′b−ab′)∞,

and from the following two claims: (1) for arbitrary a ∈ K, the identity
abθ − aθb = 0, for all b ∈ K, implies a = 0, and (2) the additive subgroup
A of K generated by the elements abθ − aθb, for a, b ∈ K, coincides with K
itself.

We prove Claim (1). Putting b = 1, Observation 3.3.14 implies a = 1,
a contradiction since bθ − b = 0 is not an identity in K. We now prove
Claim (2). Putting a ̸= b, we see that A is nontrivial. Let x ∈ A, x ̸= 0,
with x = abθ − aθb, for some a, b ∈ K. Substituting ta and tb for a and b,
respectively, with t ∈ K∗ arbitrary, we see that t1+θx ∈ A. Observation 3.3.14
implies that, for all k ∈ K, the element xk2 belongs to A. For arbitrary y ∈ K,
we now have

y = x(x−1 − y)2 − x(x−1)2 − xy2 ∈ A.

The claim is proved.
The explicit form (using matrices as in Subsection 3.2.9) of (0, 0, a′′)0 =

(0, 0, a′′)g
∞ shows that

(∞)(0,0,a′′)0 = (−f3(0, 0, a
′′)f1(0, 0, a

′′)−1,−f2(0, 0, a
′′)f1(0, 0, a

′′)−1,−a′′f1(0, 0, a
′′)−1),

= (a′′θ−2, 0,−a′′−1),

and the last assertion follows by putting a′′ = a−2−θ.

We need one more observation before we can prove the analogue of
Lemma 3.3.12 for Ree-Tits Moufang sets.

Observation 3.3.17. Let ϕ be an automorphism of the Moufang set MRee(K, θ)
fixing (∞) and (0, 0, 0). Then ϕ stabilizes the set {(0, a′, 0) | a′ ∈ K}.
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Proof. Let a′ ∈ K∗ be arbitrary and let (b, b′, b′′) be the image of (0, a′, 0)
under ϕ. Then (0, a′, 0)ϕ

∞ = (b, b′, b′′)∞. Since (0, a′, 0)∞ ∈ [U+
∞, U+

∞], also
(b, b′, b′′)∞ belongs to the commutator subgroup. It follows that b = 0. This
argument means in fact that (b, b′, b′′) must belong to the orbit of (0, 0, 0)
under [U+

∞, U+
∞]. Now we remark that (0,−b′−1, 0)0 maps (∞) onto (0, b′, 0).

Hence, similarly as above, (0, b′, b′′) must belong to the orbit of (∞) under
[U+

0 , U+
0 ]. Using the same technique as in the proof of the previous ob-

servation, one shows that this orbit consists of, besides (∞), the elements
(−f3(0, x′, x′′)f1(0, x′, x′′)−1,−f2(0, x′, x′′)f1(0, x′, x′′)−1,−x′′f1(0, x′, x′′)−1), for
x′, x′′ ∈ K. Such an element also belongs to the orbit of (0, 0, 0) under
[U+

∞, U+
∞] if and only if f3(0, x′, x′′) = 0, hence if and only if x′′θ = x′x′′. If

x′′ = 0, then the assertion follows. If x′′ ̸= 0, then x′ = x′′θ−1 and we have
f1(0, x′, x′′) = x′′2 + x′′(θ−1)(θ+1) = −x′′2, hence (0, b′, b′′) = (0, x′′1−θ, x′′−1),
for some x′′ ∈ K∗. In this case, the image of (0,−a′, 0) must be equal to, in
view of (0,−a′, 0)∞ = (0, a′, 0)−1

∞ , the element (0,−x′′1−θ,−x′′−1). But then

−x′′1−θ = (−x′′)1−θ,

a contradiction.

Our Main Result will strongly depend on the following lemma.

Lemma 3.3.18. Let ϕ be an automorphism of the Moufang set MRee(K, θ)
fixing (∞) and all elements (0, 0, a′′) with a′′ ∈ K. Then ϕ is necessarily the
identity.

Proof. By assumption, we have (0, 0, a′′)ϕ = (0, 0, a′′), for all a′′ ∈ K. By
Observation 3.3.17, there is a permutation ϕ1 of K such that (0, a′, 0)ϕ =
(0, a′ϕ1 , 0), for all a′ ∈ K. Now, by definition of automorphism of a Moufang
set, ϕ normalizes U+

0 , and hence also its center Z+
0 . Using Observation 3.3.16,

this implies that there is a permutation ϕ2 of K such that (a, 0,−a2+θ)ϕ =
(aϕ2 , 0,−(aϕ2)2+θ).

This implies

(a, a′, a′′)ϕ
∞ = (a, 0,−a2+θ)ϕ

∞ ⊕ (0, a′, 0)ϕ
∞ ⊕ (0, 0, a′′ + a2+θ − aa′)ϕ

∞,(3.5)

= (aϕ2 , a′ϕ1 , a′′ − (aϕ2)2+θ + aϕ2a′ϕ1 + a2+θ − aa′)∞. (3.6)

Let a, b ∈ K be arbitrary. Equating the second positions of (a, 0, 0)ϕ
∞ ⊕

(b, 0, 0)ϕ
∞ and (a + b, abθ,−ab1+θ)ϕ

∞, we obtain, using the general formu-
lae (3.6),

aϕ2(bϕ2)θ = (abθ)ϕ1 , (3.7)
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for all a, b ∈ K.
Similarly, equating the third positions of (0, c, 0)ϕ

∞⊕(d, 0, 0)ϕ
∞ and (d, c,−cd)ϕ

∞,
we obtain, again using the general formulae (3.6),

−(dϕ2)2+θ + d2+θ − dϕ2cϕ1 = cd − (dϕ2)2+θ + dϕ2cϕ1 + d2+θ,

for all c, d ∈ K, which implies

cd = cϕ1dϕ2 , (3.8)

for all c, d ∈ K. Putting a = b = 1 in Equation (3.7), we see that 1ϕ2(1ϕ2)θ =
1ϕ1 , which implies, in view of Equation (3.8) with c = d = 1, that (1ϕ2)2+θ =
1. Consequently, Observation 3.3.14 shows 1ϕ2 = 1. Putting d = 1 in
Equation (3.8), we now see c = cϕ1, for all c ∈ K, so ϕ1 is the identity. The
same Equation (3.8), now again with general d ∈ K, now also shows that ϕ2

is the identity. Formula (3.6) now implies that ϕ is trivial.

Theorem 3.3.19. Let G be an arbitrary projective group of MRee(K, θ),
and let U∞ ≤ G∞ be a unipotent subgroup of G. Then U∞ ≡ U+

∞.

Proof. We may assume U+
∞ ≤ U∞. Let u ∈ Z(U∞). If u maps (0, 0, 0) onto

(c, c′, c′′), then, similarly as in the beginning of the proof of Theorem 3.3.13,
u can be presented as u : (a, a′, a′′)∞ /→ (c, c′, c′′)∞ ⊕ (a, a′, a′′)∞. Hence, if
(c, c′) ̸= (0, 0), then the map ϕ : (a, a′, a′′)∞ /→ (c, c′, c′′)∞ ⊕ (a, a′, a′′)∞ ⊕
(−c,−c′ + c1+θ,−c′′ + cc′ − c2+θ)∞ belongs to U∞ and fixes all elements of
the form (0, 0, a′′), with a′ ∈ L. This contradicts Lemma 3.3.12.

So we may assume that (c, c′) = (0, 0). Then u = (0, 0, c′′)∞, for some
c′′ ∈ K. Since the center of U∞ is invariant under each mapping ht, t ∈ K,
Observation 3.3.15 implies that (0, 0, t1+θc′′)∞ ∈ Z(U∞). Hence by Observa-
tion 3.3.14 (0, 0, k2c′′)∞ ∈ Z(U∞), for all k ∈ K. For arbitrary x ∈ K, we see
that

(0, 0, x)∞ = (0, 0, (x − c′′−1)c′′)∞ ⊕ (0, 0, x2c′′)−1
∞ ⊕ (0, 0, (c′′−1)2c′′)−1

∞ ,

which implies Z(U∞) = Z+
∞. Standard group theory now implies that ϕ fixes

all elements (0, 0, x), with x ∈ K. Lemma 3.3.18 shows that ϕ is the identity,
a contradiction. Hence U∞ must coincide with U+

∞.
The theorem, and also our Main result, are proved.

3.4 The uniqueness of splittings for BN-pairs
of rank 2

In this section, we prove that generalized n-gons for which the BN -pairs
are split, have a unique splitting. The strategy of our proof is use the fact
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that U∗
+ = U∗ for the rank 1 Moufang sets. For n = 3, 6, we will study all

possibilities; for n = 4, we will only need “half” of them (see below for more
details). The upshot of our investigations will in any case be that ϕ fixes
every vertex adjacent to any vertex v∗ of Σ (for n ̸= 4), or to any vertex v∗

of fixed type (for n = 4).

3.4.1 The generalized triangles and hexagons

Suppose that Ω is a generalized n-gon with n ∈ {3, 6} corresponding to a
split Tits system (G,B,N) of rank 2, with some transitive normal nilpo-
tent subgroup U of B. Remember that we may assume that U+ ≤ U . If
U ̸= U+, then there is some nontrivial collineation ϕ ∈ U fixing the standard
apartment Σ pointwise. Let v∗ be as before. If the corresponding (split)
Tits system of rank 1 is defined by one of the structures dealt with in the
previous three subsections, then ϕ fixes automatically all elements of Ω ad-
jacent to v∗. If n = 3, 6, then clearly this is true for all vertices v∗ in Σ (see
[35](17.2),(17.5)); hence ϕ is the identity. Consequently U = U+.

3.4.2 The generalized quadrangles

In this case, we put the set of vertices of Σ equal to {x0, x1, . . . , x7}, with
subscripts modulo 8, and such that xi and xi+1 are adjacent for all i. To fix
the ideas, we may think of x0 as a point, and then x1 is a line of Ω. We put
C = {x0, x1}.

By the classification of Moufang quadrangles (see [35]) we may suppose
that the rank 1 Tits systems related to x2i+1 (for any integer i) are com-
mutative. Also by that same classification result, we may assume that this
rank 1 group corresponds either to a skew field (Moufang quadrangles of
involution type, of quadratic form type, and of pseudo-quadratic form type),
or to a quadratic form of Witt index 1 (Moufang quadrangles of exceptional
types E6, E7, E8, F4), or to an indifferent set in characteristic 2 (indifferent
of mixed Moufang quadrangles). Hence, if U ̸= U+, and if ϕ is a nontrivial
element of U fixing Σ pointwise, then ϕ fixes all points incident with one of
x2i+1. We now show that ϕ is necessarily the identity, showing that U = U+.
Henceforth we assume ϕ ̸= 1 and we seek a contradiction.

The conjugate of U under a collineation that maps the chamber C to
another chamber C ′ is denoted by U [C ′] (and we have obviously U = U [C]).

We denote by {1} = U [ℓ] ! U [ℓ−1] ! U [ℓ−2] ! · · ·! U [0] = U the ascending
central series of U (and U is nilpotent of class ℓ).

We show the Main Result in a few small steps.
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Step 1 For every chamber C ′ = {xi, xi+1}, we have ϕ ∈ U [C ′].

Indeed, let g be a nontrivial elation in G[1]
x1,x2,x3 which commutes with

ϕ (g exists as [ϕ, G[1]
x1,x2,x3] ≤ G[1]

x1,x2,x3 ≤ U and as U is nilpotent).

Hence ϕ fixes xg
7. Now let h ∈ G[1]

x5,x6,x7 be such that xh
1 = xg

7. Since
ϕ fixes xh

1 , we have [ϕ, h] = 1, and hence [ϕ, hg−1] = 1. Consequently
ϕ = ϕhg−1 ∈ Uhg−1

= U [{x0, x7}]. A similar argument now shows
that ϕ ∈ U [{x6, x7}]. Continuing like this, the assertion follows. This
implies that ϕ has to fix a thick full subquadrangle.

Step 2 Suppose y ∼ x2 is not fixed by ϕ, and let u ∈ G[1]
x3,x4,x5 be such that

yu = yϕ. Then u ̸∈ G[2]
x4.

Under the stated assumptions, choose g ∈ G[1]
x4,x5,x6 \ {1} arbitrarily.

Then let v ∈ G[1]
x1,x2,x3 be such that yϕg−1v is fixed under ϕ (this can

be accomplished by putting yϕg−1v equal to the unique vertex adjacent
to xϕg−1v

2 at distance 2 from x7). Then α := [ϕ−1, gv] ∈ G[1]
x3,x4,x5.

But evaluating yα, we see that yα = yu, hence α = u. So α is not
the identity and hence ϕ cannot fix x5

v (if it did, then ϕ would fix
the line xv

5 pointwise and α would fix all elements incident with xv
6, a

contradiction). This now implies that α = u cannot fix all elements
incident with xv

5, and so u is not a central elation.

Step 3 Let y be an arbitrary vertex adjacent to x0 but different from x1. Let
u ∈ U [i] be a non-central elation in G[1]

y,x0,x1 with i maximal. Then
[u,ϕ] = 1.

Indeed, it is clear that [ϕ, u] is a central elation by minimality of i, and
that (xu

3)
[u,ϕ] = (xu

3)
ϕ. The previous step implies that a central elation

in G[1]
x0 mapping some line through x2 onto its image under ϕ has to be

the identity, hence [u,ϕ] = 1.

We can now finish the proof.
Let u′ ∈ G[1]

y′,x0,x1
be noncentral and contained in U [i], with i maximal,

and with y′ some line through x0 different from x1. We may assume that u′

does not fix all points on x7. Then [u′,ϕ] = 1 by Step 3.
We claim that we can re-choose y′ in such a way that it is not fixed

under ϕ. i.e., we claim that there exists y ∼ x0 and a noncentral elation
u ∈ G[1]

y′,x0,x1
∩ U [i] such that yϕ ̸= y. Indeed, let y ∼ x0 with yϕ ̸= y and let

v ∈ G[1]
x1,x2,x3 with (y′)v = y. Note that u′ ̸∈ G[1]

y , hence [u′, v−1] ̸∈ G[1]
y′ and

in particular [u′, v−1] ̸= 1. Now u = u′v ∈ G[1]
y,x0,x1 is an elation belonging to

U [i]. It remains to show that u is noncentral. Since u′ /∈ G[1]
y , we have that

u′v /∈ G[1]
yv . The claim is proved.
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So we assume that u ∈ G[1]
y,x0,x1 and yϕ ̸= y. Let y ∼ y2 ∼ y3 ∼ x4, and

let w ∈ G[1]
y,y2,y3 be such that xw

1 = x7. Then uw ∈ Zi(U [x7, x0]), and hence
[uw,ϕ] = 1 (using Steps 1 and 3). But then also [[u,w],ϕ] = 1. Notice that

[u,w] ∈ G[1]
y2,y,x0 \ {1}, because the action on the points incident with x1 is

nontrivial. Since G[1]
y2,y,x0 ∩ (G[1]

y2,y,x0)
ϕ = {1} (y ̸= yϕ)), it is impossible that

[[u,w],ϕ] = 1. This contradiction proves that ϕ has to fix every y ∼ x and
thus has to be the identity.

3.4.3 The generalized octagons

Although this fact follows directly from [20], we could also give an alternative
proof here. Indeed, if n = 8, then for one bipartition class of the vertices v∗,
the corresponding rank 1 Tits system is defined by a field (see [35](17.7)),
and hence the fixed elements of Ω under ϕ form, up to duality, a thick
ideal suboctagon (for terminology, see [36]). By Proposition 5.9.13 of [36]
(originally due to M. Joswig and H. Van Maldeghem [10]), ϕ is the identity.

3.5 The uniqueness of splittings for BN-pairs
of rank n > 2

Since every Moufang set arising from root groups of buildings of higher rank
has a unique splitting, the buildings themselves also have a unique splitting:
Let’s consider a building Ω where B fixes a unique chamber C and N sta-
bilizes some apartment Σ containing C. Let U+ be the group generated by
all elations related to roots in Σ which contain the vertices of C. Then it is
well known that U+ is a transitive normal nilpotent subgroup of B. We now
have the following result.

Theorem 3.5.1. Let (G,B,N) be an irreducible Tits system of rank ≥ 2
acting faithfully on the corresponding building, and supppose that U is a
normal nilpotent subgroup of B such that UH = B, where H = B∪N . Then
U has to be U+;

Proof. We assume that (G,B,N) is an irreducible spherical BN-pair of rank
at least 3. Let Ω be the corresponding building, let Σ be the apartment
fixed by N and let C be the chamber fixed by B. Further, let Σ+ be a
half apartment in the apartment Σ containing C. Let ϕ be an arbitrary
element of U fixing all chambers contained in Σ+. Let P be a panel in the
interior of Σ+ and let R be a flag of corank 2 contained in P . Consider the
stabilizer BR of R in B, and the stabilizer UR of R in U . Clearly UR ! BR
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and UR is nilpotent. Let CR be the unique chamber containing R nearest
to C (the projection of C onto R in building language), and let C∗

R be the
chamber in Σ containing R opposite CR in the residue of R. Let C ′

R be
any chamber containing R opposite CR in the residue of R. There is an
apartment Σ′ containing C ′

R and C (by the very definition of a building),
and hence there exists u ∈ U mapping Σ to Σ′. Clearly u fixes R and maps
C∗

R onto C ′
R. Hence UR is transitive. So, if we denote by K the kernel of the

action of GR on the residue of R, then URK/K is a splitting of the rank 2
BN-pair (GR/K,BRK/K,NRK/K) (with obvious notation). It follows from
the results in this section that ϕ fixes all chambers containing P , i.e., ϕ is
a root elation by definition. Hence U coincides with the standard unipotent
subgroup U+ and the theorem is proved.





Chapter 4

Moufang Lines defined by the
Ree Group

In order to investigate the Moufang set associated with the Ree group, we
turn to the mixed hexagons. These hexagons are defined over a field of
characteristic 3 admitting a Tits endomorphism θ and allow a polarity ρ.
The absolute points under this polarity, together with the automorphisms of
the mixed hexagon commuting with ρ form the Ree-Tits Moufang set. We
call these mixed hexagons Ree hexagons, because of their close relation with
the Ree groups in characteristic 3.

These Ree groups have root groups of nilpotency class 3. As a conse-
quence, the Moufang geometries of rank one that we will define correspond-
ing to the Ree groups will have dimension 2. This means that we will have
two types of blocks in our geometry. In this chapter we prove that every
automorphism of such a geometry is an automorphism of the corresponding
Ree group, by writing down explicitly the automorphisms of this geometry.
Therefore we start with the coordinatization of the mixed hexagon and the
coordinates of this mixed hexagon in its natural embedding in PG(6, K).
We proceed with the definition and the coordinates of the Ree-Tits ovoid,
which allows us then to construct the Ree geometry. When all this is defined,
we turn to the automorphisms of the Ree geometry. As an application, we
conclude with the proof that an automorphism of the little projective group
of the generalized hexagon fixing the absolute points under ρ has to fix the
absolute lines too.

67
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4.1 The coordinatization of the Ree hexagon

In this section, we give two coordinatizations of the Ree hexagon. We start
with the coordinatization with respect to one flag ((∞), [∞]). This coordi-
natization was first carried out by De Smet and Van Maldeghem for (finite)
generalized hexagons in [3]. For a detailed description of the coordinati-
zation theory for other generalized polygons we refer to [36]. The second
coordinatization is in fact the natural embedding of the mixed hexagon in
PG(6, K).

4.1.1 Hexagonal sexternary rings corresponding to the
mixed hexagon

In [36] a coordinatization theory with respect to a flag ((∞), [∞]) is described,
it is a generalization of Hall’s coordinatization for generalized triangles. Here
we describe explicitly the coordinatization of the Ree hexagon. Let K be a
field of characteristic 3 and let K′ be a subfield such that K3 ≤ K′ ≤ K. The
hexagonal sexternary ring R = (K, K′, Ψ1, Ψ2, Ψ3, Ψ4) with

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ψ1(k, a, l, a′, l′, a′′) = a3k + l,

Ψ2(k, a, l, a′, l′, a′′) = a2k + a′ + aa′′,

Ψ3(k, a, l, a′, l′, a′′) = a3k2 + l′ + kl,

Ψ4(k, a, l, a′, l′, a′′) = −ak + a′′,

defines the Ree hexagon H(K, K′) in which points and lines are certain i-
tuples of elements of K∪K′ (i ≤ 5) and where incidence is defined as follows:

• If the number of coordinates of a point p differs by at least 2 from the
number of coordinates of a line L, then p and L are not incident.

• If the number ip of coordinates of a point p differs by exactly 1 from
the number iL of coordinates of a line L, then p is incident with L if
and only if p and L share the first i coordinates, where i is the smallest
among ip and iL

• If ip = iL ̸= 5, then p is incident with L if and only if p = (∞) and
L = [∞]

• A point p with coordinates (a, l, a′, l′, a′′) is incident with a line [k, b, k′, b′, k′′]
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if and only if

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ψ1(k, a, l, a′, l′, a′′) = k′′ = a3k + l,

Ψ2(k, a, l, a′, l′, a′′) = b′ = a2k + a′ + aa′′,

Ψ3(k, a, l, a′, l′, a′′) = k′ = a3k2 + l′ + kl′,

Ψ4(k, a, l, a′, l′, a′′) = b = −ak + a′′,

if and only if

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Φ1(a, k, b, k′, b′, k′′) = a′′ = ak + b,

Φ2(a, k, b, k′, b′, k′′) = l′ = a3k2 + k′ + kk′′,

Φ3(a, k, b, k′, b′, k′′) = a′ = a2k + b′ − ab,

Φ4(a, k, b, k′, b′, k′′) = l = −a3k + k′′,

4.1.2 The embedding of the Ree hexagon in PG(6, K)

The Ree hexagon has a natural embedding in PG(6, K). Root-elations on
this hexagon are elements of PSL7(K).
First define α as −al′ + a′2 + a′′l + aa′a′′ and β as l − aa′ − a2a′′.

Coordinates in H(K, K′) Coordinates in PG(6, K)
(∞) (1, 0, 0, 0, 0, 0, 0)
(a) (a, 0, 0, 0, 0, 0, 1)
(k, b) (b, 0, 0, 0, 0, 1,−k)
(a, l, a′) (−l − aa′, 1, 0,−a, 0, a2,−a′)
(k, b, k′, b′) (k′ + bb′, k, 1, b, 0, b′, b2 − b′k)
(a, l, a′, l′, a′′) (α,−a′′,−a,−a′ + aa′′, 1,β,−l′ + a′a′′)
Coordinates in H(K, K′) Points generating this line
[∞] (∞) and (0)
[k] (∞) and (k, 0)
[a, l] (a) and (a, l, 0)
[k, b, k′] (k, b) and (k, b, 0)
[a, l, a′, l′] (a, l, a′) and (a, l, a′, l′, 0)
[k, b, k′, b′, k′′] (k, b, k′, b′) and (0, k′′, b′, k′ + kk′′, b)

The ([∞], (∞), [0], (0, 0), [0, 0, 0])-elation mapping [0, 0] onto [0, L] has the
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following corresponding matrix in PG(6, K)

ML =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0
−L 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 L 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

The ((∞), [∞], (0), [0, 0], (0, 0, 0))-elation mapping (0, 0) onto [0, B] has the
following corresponding matrix in PG(6, K)

ML =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 B 0 0 B2

0 0 0 1 0 0 −B
0 −B 0 0 1 0 0
B 0 0 0 0 1 0
0 0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

4.2 The Ree-Tits Ovoid

We start from the Ree hexagon H(K, Kθ) where θ is a Tits-endomorphism
of K. This hexagon allows a polarity, and the absolute points under this
polarity will form an ovoid of the Ree hexagon: the Ree-Tits ovoid. We fix
the polarity ρ which maps the hat-rack (i.e. the apartment through the flags
((∞), [∞]) and ((0, 0, 0, 0, 0), [0, 0, 0, 0, 0])) onto its dual and the point (1)
onto the line [1]. The polarity takes the form:

(a, l, a′, l′, a′′)ρ = [aθ, lθ
−1

, a′θ, l′θ
−1

, a′′θ];

[k, b, k′, b′, k′′]ρ = (kθ−1
, bθ, k′θ−1

, b′θ, k′′θ−1
).

for all a, a′, a′′, b, b′ ∈ K and k, k′, k′′, l, l′ ∈ K′.
Now the point (a, l, a′, l′, a′′) is absolute for ρ if and only if it is incident

with its image, this leads to the following conditions
{

l = a′′θ − aθ+3,

l′ = a2θ+3 + a′θ + aθa′′θ.
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4.2.1 Coordinates of the Ree-Tits ovoid in the projec-
tive space embedding

We associate the tuple (a, a′′, a′−aa′′) with the point (a, a′′θ−a3+θ, a′, a3+2θ +
a′θ + aθa′′θ, a′′) Now, for a, a′, a′′ ∈ K, we put

f1(a, a′, a′′) = −a4+2θ − aa′′θ + a1+θa′θ + a′′2 + a′1+θ − a′a3+θ − a2a′2,

f2(a, a′, a′′) = −a3+θ + a′θ − aa′′ + a2a′,

f3(a, a′, a′′) = −a3+2θ − a′′θ + aθa′θ + a′a′′ + aa′2.

So the set of absolute points can be described in PG(6, K) by

X ={(1, 0, 0, 0, 0, 0, 0)}∪
{f1(a, a′, a′′),−a′,−a,−a′′, 1, f2(a, a′, a′′), f3(a, a′, a′′))|a, a′, a′′ ∈ K}.

The action of an automorphism of this ovoid fixing one point (∞) as an
element of PSL7(K) has already been given in the previous chapter.

4.2.2 Compact notation

Like before, we associate the tuple (a, a′′, a′ − aa′′) with the point (a, a′′θ −
a3+θ, a′, a3+2θ + a′θ + aθa′′θ). The set of absolute points under the polarity
now is

X = {∞} ∪ {(a, a′, a′′)}}.
The automorphism of the ovoid fixing the point (∞) acts as follows on the
remaining points (x, x′, x′′):

(x, x′, x′′).(y, y′, y′′) = (x + y, x′ + y′ + xyθ, x′′ + y′′ + xy′ − x′y − xyθ+1)

We obtain the Ree-Tits Moufang line. The Ree groups arise as (simple
subgroups of the) centralizers of polarities in these hexagons. We can see the
Ree-Tits ovoid and its automorphism group embedded in the Ree hexagon as
a representation of the Ree-Tits Moufang set, this Moufang set has nilpotency
class 3, so it can define a geometry of dimension 2. The upcoming results
are valid for Ree groups over not necessarily perfect fields.

4.3 The Ree Geometry

4.3.1 Construction

As already mentioned, the Ree groups have root groups of nilpotency class
3. As a consequence, the Moufang geometries of rank one that we will define
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corresponding to the Ree groups will have dimension 2. this means that we
will have two types of blocks in our geometry and one type of blocks is a
refinement of the other type.

Starting from the Moufang Set (X, (Ux)x∈X) it is clear that X defines the
set of points P of our Ree Geometry G = (P ,B, I), the circles arise as orbits
of a point y under the center Z(Ux) for some point x ∈ P together with that
point x, this particular point x is then called the gnarl of this circle. So every
point and gnarl defines a circle in a unique way. The spheres are again orbits
of a point y but under the group [Ux, Ux] now. The point x is the gnarl of
the sphere. The circles and spheres together form the block set B of G.

Let’s be more concrete now and look for the coordinates of the lines and
surfaces which have (∞) for gnarl: The group U∞ acts as follows on the
points (x, x′, x′′):

(x, x′, x′′).(u, u′, u′′) = (x + u, x′ + u′ + xuθ, x′′ + u′′ + xu′ − x′u − xuθ+1)

The group U ′
∞ consisting of the commutators of U∞ is precisely the set

{(0, u′, u′′)|u′, u′′ ∈ K}. Indeed, computing an arbitrary commutator, we
get

[(u1, u
′
1, u

′′
1), (u2, u

′
2, u

′′
2)] = (0, u1u

θ
2 − u2u

θ
1, u

′
1u2 − u1u

′
2 − u1u

1+θ
2 + u2u

1+θ
1 )

= (0, u′, u′′)

The center of U∞ is the set {(0, 0, u′′)|u′′ ∈ K}, we can see immediately that
such an element commutes with every element of U∞, the commutator of an
element (0, u′

1, u
′′
1) ∈ U ′

∞ and (u2, u′
2, u

′′
2) ∈ U∞ is

[(0, u′
1, u

′′
1), (u2, u

′
2, u

′′
2)] = (0, 0, u′

1u2)

= (0, 0, u′′)

Now, since the circles having (∞) as gnarl are the orbits of a point (a, a′, a′′)
under the group {(0, 0, x)|x ∈ K}, all lines with (∞) as gnarl look like this:

{(a, a′, a′′ + x)|x ∈ K} ∪ {(∞)} = {(a, a′, t)|t ∈ K} ∪ (∞)

. The spheres with gnarl (∞) have the following coordinates:

{a, a′ + x′, a′′ + x′′ + ax′|x′, x′′ ∈ K} = {(a, t′, t′′)|t′, t′′ ∈ K}

We defined the Ree-Tits unital in the mixed hexagon H(K, K′). In here,
we can ”see”the circles and spheres as follows: a circle is the set of absolute
points at distance 3 from a non-absolute line M , not going though an absolute
point, the unique absolute point for which its corresponding absolute line
intersects M is the gnarl of the line. A sphere is the set of absolute points
not opposite some point p. with p lying on an absolute line. The unique
absolute point at distance 2 from p is the gnarl of the sphere.
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)8( )8(

(a,a’,a’’)

M

(a,a’,a’’)

p

4.3.2 Derived structure at (∞)

We define the structure G′ = (P ′,B′, I) where P ′ = P \ {(∞)}, and B′ is
the set of blocks of G going through (∞) minus (∞). In order to know the
coordinates of the circles through (∞) we first write down the coordinates of
the circles with gnarl (∞). As we saw earlier they look like this:

{(a, a′, t)|t ∈ K} ∪ (∞)

Removing the point infinity gives us the vertical line La,a′. We now com-
pute the coordinates of the circle with gnarl (0, 0, 0) through (∞) When
this is done, its image under (a, a′, a′′) ∈ U∞ is the circle through (∞) with
gnarl (a, a′, a′′). Let (x, x′, x′′) ∈ U∞, g and (x, x′, x′′)0 := (x, x′, x′′)g be
collineations of PG(6, K) as in 3.2.9, then we can write (x, x′, x′′)0 ∈ U0 =
U(0,0,0) as follows :

x̄ = (x0 x1 x2 x3 x4 x5 x6) /→

x̄ ·

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 f2(x, x′, x′′) f3(x, x′, x′′) x′′ f1(x, x′, x′′) −x′ −x
0 1 −xθ 0 x′ − x1+θ 0 0
0 0 1 0 x 0 0
0 −x x′ 1 −x′′ 0 0
0 0 0 0 1 0 0
0 x2 −x′′ − xx′ x p 1 0
0 r s −x′ + x1+θ q xθ 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

The point (∞) can be identified with (1, 0, 0, 0, 0, 0, 0), so its orbit under
Z(U0) is the set:

{(1, f2(0, 0, x
′′), f3(0, 0, x

′′), x′′, f1(0, 0, x
′′), 0, 0)} = {(1, 0,−x′′θ , x′′, x′′2, 0, 0)}

= {(x, 0,−x2+θ)} ∪ {(∞)}
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with x′′ ∈ K and x being x′′−2−θ The image of this circle under (a, a′, a′′) ∈ U∞
is the set

{(a + x, a′ + aθx, a′′ + (a′ − a1+θ)x − x2+θ)|x ∈ K} ∪ {(∞)}

Removing the point (∞) gives us the ordinary line C(a,a′,a′′)

As for circles, we consider the spheres with gnarl (∞) and the other
spheres through (∞) separately: The spheres with gnarl (∞) have coordi-
nates:

{(a, t′, t′′)|t′, t′′ ∈ K} ∪ {(∞)}.

Removing the point (∞) gives us the vertical plane Pa.
The orbit of (∞) under U ′

0 is the set:

{(1, f2(0, x′, x′′), f3(0, x′, x′′),x′′, f1(0, x′, x′′),−x′, 0)}
= {(1, x′θ,−x′′θ + x′x′′, x′′, x′′2 + x′1+θ,−x′, 0)}

= {( x′′θ − x′x′′

x′′2 + x′1+θ
,

−x′θ

x′′2 + x′1+θ
,

−x′′

x′′2 + x′1+θ
)} ∪ {(∞)}

with x′, x′′ ∈ K The image of this sphere under (a, a′, a′′) ∈ U∞ is the set

{( x′′θ − x′x′′

x′′2 + x′1+θ
,

−x′θ

x′′2 + x′1+θ
,

−x′′

x′′2 + x′1+θ
) · (a, a′, a′′)} ∪ {(∞)}}

Removing the point infinity gives us the ordinary plane S(a,a′,a′′)

Property: a sphere contains only its obvious circles A sphere cannot
contain a circle completely if the gnarl of the circle is not the gnarl of the
sphere: Let’ s consider such a circle, because of the 2-transitivity of the Ree-
Tits Moufang set we may assume without loss of generality that this circle’s
gnarl is (∞) while the gnarl of the sphere is (0, 0, 0). Translating this in
coordinates, there should exist a, a′ ∈ K such that (a, a′, x) can be written as

(
x′′θ − x′x′′

x′′2 + x′1+θ
,

−x′θ

x′′2 + x′1+θ
,

−x′′

x′′2 + x′1+θ

)

with x′, x′′ ∈ K. As an easy computation will reveal, this is not possible.



4.3. The Ree Geometry 75

)8(

(0,0,0)

4.3.3 Parallellism in this derived structure

First we remark that every ordinary line C(a,a′,a′′) lies completely in the affine
plane with equation Y = aθX + (a′ − a1+θ). We say that two ordinary lines
C1 and C2 are parallel if all vertical lines intersecting C1 intersect C2—in
that case the two ordinary lines lie in the same affine plane— or if there
is no vertical line intersecting both ordinary lines —which implies that the
ordinary lines lie in parallel, but disjoint, affine planes—.

C(a,a’,a’’)

C(a,a’,b’’)

(m.a m+(a’+a   ),x)e e+1

(a.a’,x)

Y=a X+(a’+a   )e e+1

Two circles lying in the same projective plane

We can say two ordinary lines C(a,a′,a′′) (coming from the circles through
(∞) with gnarl (a, a′, a′′)) and C(b,b′,b′′) are parallel if and only if a = b.
Indeed, a vertical line meeting the ordinary line C(a,a′,a′′) must lie in the
affine plane Y = aθX +(a′−a1+θ), so any vertical line meeting both C(a,a′,a′′)
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and C(b,b′,b′′) must lie in the intersection of

{
Y = aθX + (a′ − a1+θ)

Y = bθX + (b′ − b1+θ).

This has a unique solution if and only if a ̸= b.

e +1Y=a X+(a’+a    )e
3 

e +1Y=a X+(a’+a    )e
2

e +1Y=a X+(a’+a    )e
1 

One class of parallel circles

4.4 Proof of this Result

4.4.1 general idea

We consider an automorphism ϕ fixing the structure of the Ree-Tits Moufang
set. Without loss of generality we may assume that ϕ fixes both (∞) and
(0, 0, 0). Our automorphism has to preserve the parallellism relation we just
defined since a vertical plane cannot be mapped onto an ordinary plane.
This condition translates algebraically into ϕ having the following action:
(x, y, z)ϕ = (ℓxσ, ℓ1+θyσ, ℓ2+θzσ). This action preserves the structure of the
generalized hexagon.

4.4.2 proof

Lemma 4.4.1. There is no automorphism of ∆ fixing (∞) and mapping
some vertical line onto an ordinary line.

Any automorphism of ∆ maps spheres onto spheres and circles onto cir-
cles. If one sphere S1 is mapped onto another sphere S2, the gnarl of the first
sphere has to be mapped on the gnarl of the second. Indeed, the gnarl of S1

is exactly the intersection of any two circles lying completely in S1. Those
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two circles are mapped onto two circles lying completely in S2, hence their
intersection is the gnarl of S2. Now a circle lies completely in exactly one
sphere and the gnarl of the circle is the gnarl of this corresponding sphere,
we obtain that gnarls of circles are mapped onto gnarls of circles. The lemma
is proved.

The previous lemma now easily implies that ϕ must preserve the gnarls
of the blocks of ∆. Since the Ree group acts doubly transitively on the
points of ∆, we may also assume that ϕ fixes the points (∞) and (0, 0, 0).
Consequently, ϕ fixes the set of vertical lines. Therefore the points (a, a′, z1)
and (a, a′, z2) are mapped on the same vertical line. If we represent ϕ as
follows:

ϕ : (x, y, z) /→ (g1(x, y, z), g2(x, y, z), g3(x, y, z))

then both g1 and g2 have to be independent of z.
The mapping ϕ preserves the parallellism relation between ordinary lines,

since the number of vertical lines meeting two circles is preserved under ϕ.
This translates to g1 being independent of y. Indeed, two points (a, y1, z1)
and (a, y2, z2) being the gnarls of two parallel ordinary lines are mapped onto
two gnarls of parallel ordinary lines, which implies that g1(a, y1) = g1(a, y2)
for every choice for y1 and y2.

The point (0, 0, 0) is fixed by ϕ, so the affine plane Y = 0 — which is the
unique affine plane containing both C(0,0,0) and L(0,0)— is fixed by ϕ. The
plane Y = c1 gets mapped onto the plane Y = c2, so g2(x, c1) = g2(0, c1) for
every choice for x.

It follows that there are two permutations α and β of K such that
(x, y, z)ϕ = (xα, yβ , g3(x, y, z)). Since ϕ preserves gnarls, it maps the or-
dinary line C(a,b,c) onto the ordinary line C(aα,bβ,g3(a,b,c)). Now notice that the
point (x, y, z) can only be contained in the ordinary line C(a,b,c) if y = b+aθx.
A standard argument now shows that, for all a, b, x ∈ L,

(b + aθx)β = bβ + (aα)θ((x + a)α − aα). (4.1)

The permutation β is clearly additive:(b + aθx)β = bβ + (aθx)β . Put ℓ = 1α.
Then we see, by setting a = 1 and b = 0 in the equation (4.1) above, that

xβ = ℓθ((x + 1)α − 1α), (4.2)

so α is additive if and only if (x + 1)α = xα + 1α. Plugging in x = m − 1 in
(4.2) we have that (m − 1)β = ℓθ(mα − 1α). Because of the additivity of β
we have on the other side that (m − 1)β = mβ + (−1)β = ℓθ((1 + m)α + 1α),
so α is additive as well.
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We now have that xβ = ℓθxα, ∀x ∈ K. We can define the bijection
σ : K → ℓ−1K : y /→ yσ = ℓ−1yα (note that 1σ = 1). Plugging in these
identities in equation (4.1) yields

(b + aθx)σ = bσ + (aσ)θxσ,

for all a, b, x ∈ K. Putting a = 1, we see that σ is additive; putting b = 0 and
x = 1, we see that σ commutes with θ. Furthermore, it follows easily that
(xy)σ = xσyσ for x ∈ Kθ and y ∈ K. We may view σ as an automorphism of
K by defining xσ = t if and only if (xθ)σ = tθ (and this is well defined and
agrees on K). Now the action of ϕ on a point (x, y) is given by (x, y)ϕ =
(ℓxσ, ℓ1+θyσ), for all x, y ∈ K.

Let us now investigate what g3(x, y, z) looks like.
The point p with coordinates (a− a′

aθ , 0, a′′ +(a′−a1+θ)(−a′

aθ )− (−a′

aθ )2+θ) lies

on both C(a,a′,a′′) and on the circle with gnarl (0, 0, a′′ + (a1+θ−a′)1+θ+a′1+θ

a2+θ ), so
its image under ϕ lies on the circle with gnarl (ℓaσ, ℓ1+θa′σ, g3(a, a′, a′′)) and

on the circle with gnarl (0, 0, g3(0, 0, a′′ + (a1+θ−a′)1+θ+a′1+θ

a2+θ )) which leads to

⎧
⎪⎨

⎪⎩

g3(a, a′, a′′) = g3(a − a′

aθ , 0, a′′ − (a′−a1+θ)a′

aθ + ( a′

aθ )2+θ) + ℓ2+θ(a′2

aθ − aa′ − a′2+θ

a3+2θ )
σ

g3(a − a′

aθ , 0, a′′ − (a′−a1+θ)a′

aθ + ( a′

aθ )2+θ) = g3(0, 0, a′′ + (a1+θ−a′)1+θ+a′1+θ

a2+θ ) − (ℓ(a − a′

aθ )σ)2+θ

Putting these two equations together we get:

g3(a, a′, a′′) = g3(0, 0, a
′′+

(a′ − a1+θ)1+θ + a′1+θ

a2+θ
)−ℓ2+θ(

(a′ − a1+θ)1+θ + a′1+θ

a2+θ
)σ.

for every a ∈ K\{0} and a′ ∈ K. The point (0, a′, a′′) lies on every circle with

gnarl (A, a′, a′′ + a′A − A2+θ), this implies for every choice of A:
⎧
⎪⎨

⎪⎩

g3(0, a′, a′′) = g3(0, 0, a′′ − a′θ a′+A1+θ

A2+θ ) − ℓ2+θ(−a′θ a′+A1+θ

A2+θ )σ,

g3(0, a′, a′′) = g3(0, 0, a′′ + a′θ a′+A1+θ

A2+θ ) − ℓ2+θ(a′θ a′+A1+θ

A2+θ )σ.

The second equation arises if we use −A instead of A.
Subtracting both previous equations, we get:

g3(0, 0, a
′′ − a′θ a′ + A1+θ

A2+θ
) − g3(0, 0, a

′′ + a′θ a′ + A1+θ

A2+θ
) = ℓ2+θ(a′θ a′ + A1+θ

A2+θ
)σ

Setting a′ = (B2−θ)1+θ and A = B2−θ we have

g3(0, 0, a
′′ + B) − f3(0, 0, a

′′ − B) = ℓ2+θ(−B)σ.
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Finally, we can set B = a′′, for a general a′′, and this implies
{

g3(0, 0,−a′′) = ℓ2+θ(−a′′)σ, and

g3(a, a′, a′′) = ℓ2+θa′′σ.

Now the action of ϕ on a point (x, y, z) is given by (x, y, z)ϕ = (ℓxσ, ℓ1+θyσ, ℓ2+θzσ).
The proof of our Main Result is complete.

Remark Recently, K. Struyve proved that the geometry defined by the
F4 Moufang set— the other known Moufang set whose root groups have
nilpotency class 3— has an automorphism group lying completely in the
automorphism group of the corresponding Moufang set.

4.5 Proof of the Corollary

If all absolute points of a mixed hexagon are fixed, all absolute lines have to
be fixed as well.

By Theorem 7.3.4 and Theorem 7.7.2 of [36], any polarity ρ of a Moufang
hexagon is associated to a Ree group, and happens in a so-called Ree hexagon.
Now, the explicit form of the set of absolute points of a polarity on page 343
of [36] implies very easily that the circle with gnarl (∞) containing (0, 0, 0)
is precisely the set of absolute points at distance 3 (in the incidence graph)
from the (unique) line L of the hexagon at distance 2 from (∞)ρ and 3 from
(0, 0, 0). Hence, it is now easy to see that the set of circles coincides with the
sets of absolute points at distance 3 from a given line of the hexagon. We
say that this given line corresponds in the hexagon to our circle. Likewise,
the set of spheres coincides with the sets of absolute points at distance 4 or
less from a given point, contained in some absolute line. This given point is
referred to as the special point

We want to show now that every automorphism σ of the little projective
group of Γ stabilizing the Ree-Tits ovoid also stabilises its image under the
polarity ρ. If this were not the case, we would have an automorphism σ of
the little projective group of Γ mapping spheres onto non-absolute spheres :
sets of absolute points at distance 4 or less from a given (special) point p, but
now with p not contained in some absolute line. The (absolute) spheres and
the non-absolute spheres however do not have the same geometric properties:
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)8(

s s’

sphere nonïabsolute sphere

A sphere, on one hand, contains only its obvious circles: the circles cor-
responding to lines in the hexagon going through the special point. A non-
absolute sphere, on the other hand contains not only circles corresponding to
lines through the special point; at least one other circle also lies completely
in this set. The circles corresponding to lines through the special point all
have different gnarls, the absolute lines corresponding to these gnarls lie at
distance 3 from the special point. The image of our special point is now a
non-absolute line at distance 3 from all these gnarls and at distance 3 from
the special point, hence it corresponds to a circle lying completely in our
non-absolute sphere without going through the special point.

4.6 Construction of the generalized hexagon
out of the Ree geometry

We already defined points, circles and spheres in the Ree geometry, the non-
absolute spheres can be defined as follows: for the unique (absolute) sphere
with special point x going through y, we consider the unique circle C with
gnarl x going through y, for every point p on this circle, the circle with
gnarl p going through x is a circle of the new sphere. Note that these circles
form a set of parallel ordinary lines in the derived structure at x, for which
there are vertical lines intersecting all these circles. The circle C is the circle
corresponding to the non-absolute sphere. We shall denote the gnarl of a
sphere S with ∂S, the special point of a non-absolute sphere gets the same
notation: ∂N . We can now construct the Ree hexagon. For that reason we
define the following geometry Γ = (P ,L, I). Both the point set P and the
line set L of Γ are the union of the points, the spheres and the new spheres
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of the Ree Geometry. Hence if x is a point of the Ree-Tits ovoid, then x can
be viewed as a point or as a line of Γ. To make that difference we write xp

or xl if we view x as an element of P or L, respectively. The same holds for
spheres and non-absolute spheres. We now define incidence in Γ. A point
xp, with x a point of the Ree geometry is incident with a line yl, y also being
a point of the Ree geometry, if and only if x = y. A point xp (line xl), x
a point of the Ree geometry, is incident with a line Sl (point Sp), S being
a sphere, if and only if ∂S = x. A point xp (line xl) is never incident with
a line Nl (point Np), if x is a point and N is a non-absolute sphere of the
Ree geometry. A point Sp is never incident with a line S ′

l for two spheres
S, S ′. A point Sp (line Sl) is incident with a line Nl (point Np), for a sphere
S and a non-absolute sphere N if and only if the circle corresponding to N
lies completely in S. A point Np is incident with a line N ′

l , for N,N ′ new
spheres of the Ree geometry if and only if the circle corresponding to N ′ lies
completely in N such that ∂N ∈ N ′, ∂N ′ ∈ N and ∂N ̸= ∂N ′.

elements incident with x p

elements incident with S p

the absolute line x
l

the spheres S l

l
the absolute line S

the circles corresponding to 

b

the non absolute spheres Np l=N
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N
the sphere containing
the circle corresponding to N

the non absolute spheres N ’ such that
b N in N ’  and
b N ’ in N 

elements incident with Np

b

b

N

N

N ’

N ’
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A.1 Embedding of the classical hexagons

The points of Q(7, K) can be viewed as 8-tuples (x0, x1, . . . , x7), up to a scalar
multiple, with elements in K and satisfying the relation

x0x4 + x1x5 + x2x6 + x3x7 = 0

Let V denote the projective space PG(7, K).The trilinear form T : V × V ×
V → K with the following explicit description:

T (x, y, z) =
x0 x1 x2

y0 y1 y2

z0 z1 z2

+
x4 x5 x6

y4 y5 y6

z4 z5 z6

+ x3(z0y4 + z1y5 + z2y6) + x7(y0z4 + y1z5 + y2z6)

+ y3(x0z4 + x1z5 + x2z6) + y7(z0x4 + z1x5 + z2x6)

+ z3(y0x4 + y1x5 + y2x6) + z7(x0y4 + x1y5 + x2y6)

− x3y3z3 − x7y7z7

tells if a pair of points of Q(7, K) represents an incident (0-point,1-point)-
pair in Ω(K) if and only if the linear form T (x, y, z′) is identically zero in z′,
and similarly for any cyclic permutation of the letters x, y, z. So if we want
to know which 1-point is associated with y = (y0, y1, . . . , y7) we just have to
look for all the 0-points incident with y (this will be a 3-space)

Now let σ be an automorphism of K of order 1 or 3, then the map

τσ : P (i) → P (i+1) : (xj)j∈J /→ (xσ
j )j∈J

i = 0, 1, 2 mod 3, J = {0, 1, . . . , 7} preserves incidence in Ω(K). It gives
rise to a twisted triality hexagon if the order of σ is 3 and to a split-Cayley
hexagon if σ represents the identity.

The points of the twisted triality hexagon are:

Coordinates in T(K′,σ) Coordinates in PG(7, K′)
(∞) (1, 0, 0, 0, 0, 0, 0, 0)
(a) (a, 0, 0, 0, 0, 0, 1, 0)
(k, b) (b, 0, 0, 0, 0, 1,−k, 0)
(a, l, a′) (−l − aa′, 1, 0, aσ, 0, aσ+σ2

,−a′,−aσ2
)

(k, b, k′, b′) (k′ + bb′, k, 1,−bσ, 0, b′, bσ+σ2 − b′k, bσ2
)

(a, l, a′, l′, a′′) (−al′ + a′σ+σ2
+ a′′l + aa′a′′,−a′′,−a, a′σ2 − aσa′′,

1, l + (aa′)σ + (aa′)σ2 − aσ+σ2
a′′,−l′ + a′a′′, aσ2

a′′ − a′σ)

The points of the split Cayley hexagon hexagon all lie in the hyperplane of
PG(7, K) with equation x3+x7 = 0. That is why we can embed this hexagon
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in PG(6, K), Setting α = −al′ + a′2 + a′′l + aa′a′′ and β = l + 2aa′ − a2a′′,
we obtain:

Coordinates in H(K) Coordinates in PG(6, K)
(∞) (1, 0, 0, 0, 0, 0, 0)
(a) (a, 0, 0, 0, 0, 0, 1)
(k, b) (b, 0, 0, 0, 0, 1,−k)
(a, l, a′) (−l − aa′, 1, 0,−a, 0, a2,−a′)
(k, b, k′, b′) (k′ + bb′, k, 1, b, 0, b′, b2 − b′k)
(a, l, a′, l′, a′′) (α,−a′′,−a,−a′ + aa′′, 1,β,−l′ + a′a′′)

The Ree hexagon can be described as follows: Let K be a field of charac-
teristic 3 and let K′ be a subfield such that K3 ≤ K′ ≤ K. If we restrict in
the coordinatization of H(K) the set R2 to K′, then all operations are still
well defined, and we obtain a subhexagon H(K, K′), which we call a mixed
hexagon. The coordinates are the same as for the split Cayley hexagon, but
now k, k′, l and l′ must lie in the subfield K′.
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B.1 Nederlandse samenvatting

B.1.1 Definities

Veralgemeende Veelhoeken

Een meetkunde van rang 2 is een drietal Γ = (P ,L, I) met P en L niet
lege, disjuncte verzamelingen, en waarbij de incidentierelatie I ⊆ P × L een
relatie voorstelt waarbij elk element van P ∪ L incident is met minstens 1
element van P∪L. De elementen van P noemen we punten terwijl L rechten
bevat. Een gewone veelhoek, bijvoorbeeld, is een meetkunde bestaande uit n
verschillende punten x2i en n verschillende rechten x2i+1, i ∈ {0, . . . , n − 1}
zodat x2i−1Ix2iIx2i+1 voor i ∈ {1, . . . , n − 1} en x2n−1Ix0Ix1.

Een veralgemeende n-hoek (voor n een natuurlijk getal groter dan 1) is
een meetkunde Γ = (P ,L, I) die voldoet aan de volgende drie axioma’s:

V V1 Γ bevat geen gewone k-hoeken (als deelmeetkunde) voor 2 ≤ k < n,

V V2 Elke 2 elementen x en y in P ∪ L zijn bevat in een gewone n-hoek in
Γ. Zo’n gewone n-hoek noemen we een appartement van Γ.

V V3 Er bestaat een gewone (n + 1)-hoek, als deelmeetkunde van Γ

We zeggen dat een eindige veralgemeende veelhoek de orde (s, t) heeft als er
op elke rechte s + 1 punten liggen en er door elk punt t + 1 rechten gaan.
In deze thesis worden veralgemeende vierhoeken en veralgemeende zeshoeken
onderzocht: alles wat er te weten valt over eindige veralgemeende vierhoeken
staat in [13], hoewel daar een licht andere definitie gegeven wordt voor een
veralgemeende vierhoek, komt die overeen met onze gehanteerde definitie in
het geval dat er meer dan 2 rechten door een punt gaan en er meer dan 2
punten op een rechte liggen. Voor veralgemeende zeshoeken beperken we
ons tot een klassiek geval, we hanteren hier ook de coördinatizatie van de
Ree-zeshoek; de zelfduale deelzeshoek van de Split-Cayley zeshoek.

Niet elke n ∈ \{0, 1} laat een eindige veralgemeende n-hoek toe; Feit
en Higman bewezen in [4] dat een eindige n-hoek van orde (s, t) (s en t
verschillend van 1) enkel bestaan als

• n = 2,

• n = 3 en s = t,

• n = 4,

• n = 6 met st een kwadraat,

• n = 8 met 2st een kwadraat.
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Moufang veralgemeende veelhoeken

Voor elke natuurlijke n > 1 zijn er veralgemeende n-hoeken als we niet
eisen dat de orde eindig is. We kunnen echter wel de oneindige veral-
gemeende veelhoeken classificeren als we een transitiviteitsvoorwaarde op-
leggen, dat is dan de Moufang voorwaarde. We beschouwen daarvoor een
pad γ = (x1, . . . , xn−1) van n−2 elementen van P ∪L waarvoor xiIxi+1 voor
i ∈ {1, . . . , n − 2} en de verzameling van collineaties van Γ die elk element
incident met minstens 1 element van γ fixeren, als diens actie op de apparte-
menten door γ transitief is noemen we γ een Moufang pad. Als alle paden
van lengte n−2 Moufang zijn, dan voldoet de veralgemeende veelhoek aan de
Moufang voorwaarde. Tits en Weiss schreven in 2002 de classificatie van de
Moufang veelhoek neer in [35]. Daarin staat dat een Moufang veralgemeende
n-hoek Γ slechts bestaat als

• n = 3 en Γ ∼= T (A) is projectief vlak gedefinieerd over een alternatieve
delingsring A.

• n = 4 en Γ is van involutorisch, kwadratisch , indifferentieel of pseu-
dokwadratisch type ofwel is het van type E6, E7, E8 of F4.

• n = 6 en Γ ∼= H(J, F, #) is gedefinieerd over een hexagonaal systeem
(J, F, #).

• n = 8 en Γ ∼= O(K,σ) voor een octogonale verzameling (K,σ).

De Moufang sets waarover deze veralgemeende veelhoeken gedefinieerd zijn
worden beschreven in hoofdstuk 4 van deze thesis, in hoofdstuk 1 staat heel
kort beschreven wat we bedoelen met die soorten veelhoeken. Voor meer
informatie over die classificatie verwijzen we —uiteraard— naar [35] zelf.

Moufang sets

Moufang sets zijn gegroeid uit de gebouwentheorie; de residu’s afkomstig
van Moufang gebouwen van hogere rang vormen een verzameling waarop een
familie van unipotente groepen werkt, die groepen voldoen aan welbepaalde
transitiviteitseigenschappen waardoor de Moufang set een zekere structuur
in zich heeft.

Een Moufang set is een system M = (X, (Ux)x∈X) bestaande uit een
verzameling X en een familie van permutatiegroepen (we noteren de actie
van een permutatie op een punt exponentieel, zodat de samenstelling van
links naar rechts wordt toegepast) van X gëındexeerd door X zelf die voldoet
aan de volgende voorwaarden:
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MS1 Ux fixeert x ∈ X and werkt scherp transitief op X\{x}.

MS2 In de volledige permutatiegroup over X normalizeert elke Ux de verza-
meling van deelgroepen {Uy|y ∈ X}.

De groepen Ux noemen we wortelgroepen. The elementen van Ux noemen
we dan wortel elaties. Als Ux een commutatieve groep is voor een x ∈ X ,
dan is die commutatief voor alle x ∈ X en spreken we van een translatie
Moufang set.

De groep S voortgebracht door de groepen Ux, voor alle x ∈ X , noemen
we de kleine projectieve groep van de Moufang set. Een permutatie van
X dat de verzameling van deelgroepen {Uy ∥ y ∈ X} normalizeert, is een
automorfisme van de Moufang set. De verzameling van alle automorfismes
van de Moufang set is een groep G, die we de volledige projectieve groep van
de Moufang set noemen. Elke groep H , met S ≤ H ≤ G, noemen we een
projectieve group van de Moufang set.

De Moufang sets worden in het tweede hoofdstuk beschouwd als residu’s
van veralgemeende vierhoeken, doordat er maar 2 reguliere acties op een
verzameling bestaan, kunnen we afleiden dat de veralgemeende vierhoek
Moufang moet zijn als hij aan een (ogenschijnlijk) minder strenge transi-
tiviteitsvoorwaarde voldoet. Moufang sets worden soms ook gespleten BN -
paren van rang 1 genoemd, dit houdt in dat er een group U bestaat die
nilpotent is en waarvoor U ·H = B, met H = B ∩N , B is hier de stabiliza-
tor van een punt van X (een vlag van het gebouw van rang 1) en N fixeert
twee punten (een appartement van het gebouw). In het derde hoofdstuk
tonen we aan dat die splijting uniek is voor de Moufang sets die we reeds
kennen: zij die afkomstig zijn van wortelgroepen uit gebouwen van hogere
rang en de Suzuki-Tits en Ree-Tits Moufang veelhoeken. Uit Moufang sets
vallen er ook nieuwe meetkundes te construeren (als ze tenminste niet abels
zijn); ze werden geconstrueerd door Tits in 1996 [33]. Tits vroeg zich dan
af of de automorfismegroep van deze meetkundige structuur bevat was in de
automorfismegroep van de overeenkomstige algebräısche groep, m.a.w. bevat
deze nieuwe meetkunde genoeg informatie om de oorspronkelijke algebräısche
groep terug te reconstrueren? Dit kon hijzelf aantonen voor bepaalde klassen
van algebräısche groepen, in hoofdstuk 4 wordt aangetoond dat de Ree-Tits
meetkunde een automorfismegroep heeft die volledig bevat is in de automor-
fismegroep van de veralgemeende zeshoek waarop hij leeft.
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B.1.2 Moufang voorwaarden voor veralgemeende vier-
hoeken

We weten reeds dat als een veralgemeende veelhoek aan de Moufang voor-
waarde voldoet, de verzameling van γ-elaties, voor ieder pad γ van lengte
n − 2, transitief werkt op de appartementen door γ, Deze voorwaarde kan
op verschillende manieren afgezwakt worden, zo kunnen we de verzameling
van γ-elaties beschouwen voor ieder pad γ van lengte i− 2, als die transitief
blijkt te werken op de appartementen door γ spreken we van een een veral-
gemeende vierhoek die i-Moufang is. Voor paden van even lengte kunnen we
eigenlijk 2 soorten beschouwen: zij die als uiterste elementen punten hebben
en zij die als uiterste elementen rechten hebben. Als de γ-elaties transitief
werken voor slechts 1 soort pad met lengte i − 2, spreken we van een half
i-Moufang vierhoek

Ook bestaan er half 3-Moufang veralgemeende vierhoeken, ze vertegen-
woordigen de grootste gemene deler van half (4-)Moufang vierhoeken en 3-
Moufang veralgemeende vierhoeken. Beschouw een vlag {x, L} van de ver-
algemeende vierhoek S. Beschouw een willekeurig punt z collineair met x
(die niet op L ligt) en noem de rechte die x met z verbindt M . Beschouw
analoog een rechte K concurrent met L die niet door x gaat en noem het
snijpunt y = K ∩ L. De groep G[1]

x,L ∩ Gz werkt semi-regulier op de verza-
meling van appartementen die {x, y, z, L,M} bevatten, net zoals de groep

G[1]
[x,L] ∩ GK semi-regulier werkt op the appartementen door {x, y, L,M,K}.

Wanneer voor elke keuze voor z ∼ x, de groep G[1]
x,L ∩ Gz transitief blijkt te

werken op de verzameling appartementen door {x, y, z, L,M}, zeggen we dat
de vlag {x, L} half 3-Moufang ten opzichte van x is, terwijl een transitieve

actie of G[1]
[x,L] ∩ GK op de verzameling appartementen door {x, y,K,L,M}

voor elke keuze voor K concurrent met L, van S een veralgemeende vierhoek
maakt die half 3-Moufang ten op zichte van zijn rechte L is. De veralge-
meende vierhoek S noemen we half 3-Moufang als ofwel elke vlag {x, L} van
S half 3-Moufang is ten opzichte van x, ofwel als alke vlag {x, L} van S half
3-Moufang is ten opzichte van L.

De meest natuurlijke vraag luidt nu: Zijn deze afzwakkingen van de Mo-
ufang voorwaarde wel echte afzwakkingen, of zijn ze er eigenlijk mee equiva-
lent? Uiteindelijk konden we hetvolgende aantonen.

Stelling B.1.1. Alle half 3-Moufang vierhoeken voldoen aan de Moufang
voorwaarde

In grote lijnen ziet het bewijs er als volgt uit. Als alle vlaggen in S
Moufang zijn ten opzichte van hun punt, kunnen we een collineatie g con-
strueren die de wortel (x7, x0, x1, x2, x3) fixeert, alle punten op x1 vasthoudt
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en Σ afbeeldt op een willekeurig appartement door deze wortel. beschouw
een willekeurig punt x op x1, x ̸= x0 en kies een punt y collineair met x die
niet op x1 ligt, we stellen dat de actie van G[1]

x1,x ∩ Gy op de rechten door
x0 onafhankelijk is van onze keuzes voor x and y. Dit geeft ruimte om een
collineatie g′ te construeren die alle elementen incident met x0, x1, x2 fixeert.
Met andere woorden, de helft van de paden van lengte 2 is Moufang en we
hebben een half Moufang vierhoek. Aangezien zo’n half Moufang vierhoek
vlaggen bezit die Moufang zijn ten opzichte van hun rechten, kunnen we een
duale redenering toepassen om te besluiten dat half 3 Moufang vierhoek aan
de Moufang voorwaarde moeten voldoen.

Opmerking Ondertussen heeft K.Tent in [21] aangetoond dat veralge-
meende n-hoeken die 2-Moufang zijn moeten voldoen aan de Moufang voor-
waarde voor n ≤ 6.

Ook hebben K.Thas en H. Van Maldeghem in [26] de equivalentie van de
half-2 Moufang voorwaarde met de Moufang voorwaarde aangetoond voor
eindige veralgemeende vierhoeken.

B.2 De uniciteit van de splijting van eindige
BN-paren

B.2.1 BN-paren

A BN-pair in een groep G is een systeem (B,N) bestaande uit twee deel-
groepen van G zodat

BN0 B and N de volledige groep G voortbrengen

BN1 B ∩ N = H ! N

BN2 de groep W = N/H een verzameling S van generatoren bevat zodat
aan de volgende relaties voldaan is voor elke s ∈ S en voor elke w ∈ W

BN ′
2 sBwB ⊆ BwB ∪ BswB

BN ′′
2 sBs ! B

The groep W heet de Weyl groep van het BN -paar. Een BN -pair is gespleten
wanneer er een deelgroep U van B bestaat die nilpotent is en zodat U ·H = B.

In een veralgemeende veelhoek is B de stabilizator van een vlag, N staat
dan voor de stabilizator van een (willekeurige) appartement door die vlag,
dus moet H de puntsgewijze stabilizator van dit appartement zijn. De Weyl
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groep is dan de volledige automorfisme groep van dit appartement gezien als
een gewone veelhoek .

We weten reeds (dank zij K.Tent [19]) dat de wortelgroepen van een Mo-
ufang set nilpotent zijn, dus kennen we al zeker 1 splijting van onze Moufang
set. Nu is het de vraag of er andere zijn.

B.2.2 Splijtingen van BN-paren

Stelling B.2.1. Voor alle Moufang sets waar we weet van hebben zijn de
mogelijke splijtingen gekend, in slechts 1 geval is de splijting niet uniek.

Een schets van ons bewijs ziet er als volgt uit: We onderzoeken de actie
van een automorfisme ϕ in een transitieve nilpotente deelgroep U∞ van de
stabilizator van (∞) in een projectieve groep van elke beschreven Moufang
set. Aangezien U+

∞ regulier werkt op X \{∞}, mogen we aannemen dat deze
automorfisme zowel 0 als ∞ fixeert. Het feit dat U∞ nilpotent is verzekert
ons van het feit dat het centrum van U∞ niet triviaal is, maar aangezien
ϕ het punt 0 fixeert, moet het ook diens baan onder het centrum van U∞
fixeren, ons doel is nu om aan te tonen dat Z(U∞) groot genoeg is, zodat ϕ
de identiteit moet zijn.

We maken een onderscheid tussen translatie Moufang sets (waarvoor er
altijd een deel-Moufang set bestaat die isomorf is met een projectieve rechte
of een polaire rechte) en de andere Moufang sets.

Voor 1 welbepaald geval is de groep U+
∞ niet de unieke transitieve nilpo-

tente groep, namelijk voor de kleinst mogelijke hermitische Moufang set. De
Moufang set is dan de hermitische kromme in PG(2, 4), bestaande uit 9 pun-
ten, samen met zijn automorfismegroep, de groep U+

∞ werkt regulier op de
punten van deze kromme en heeft dus orde acht, het veldautomorfisme σ van
GF (4) induceert een automorfisme van de hermitische kromme, de groep U
voortgebracht door U+

∞ en σ is dan nilpotent en U · H = B.
Voor Moufang veelhoeken en Moufang gebouwen met rang groter dan 2

kunnen we dankzij de uniciteit van de splijtingen van Moufang sets aantonen
dat ook zij een unieke splijting bevatten.

B.3 Ree-Tits Moufang Sets

De Ree groepen werden ontdekt door Ree [14], hij definieerde die echter
over eindige velden die perfect moesten zijn. In [30], gaf Tits een con-
structie die ook werkte voor niet-perfecte eindige velden zolang die maar
een Tits endomorfisme toelieten. Een andere constructie van Tits (die niet
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publiceerd werd, maar die wel beschreven staat in Sectie 7.7 van [36]) ge-
bruikt bepaalde Moufang veralgemeende zeshoeken van gemixte type (we
noemen die zeshoeken de Ree zeshoeken die gedefinieerd worden over velden
met karakteristiek 3. The Ree groepen komen dan tevoorschijn als (simpele
deelgroepen van de) centralizatoren van polariteiten in deze zeshoeken. We
zien de Ree-Tits ovöıde en zijn automorfismengroep die ingebed is in de Ree
zeshoek dan als een permutatievoorstelling van de Ree-Tits Moufang set,
deze Moufang set is nilpotent van lengte 3, dus definieert het een meetkunde
met dimensie 2. Dit betekent dat we twee soorten blokken in onze meetkunde
hebben, de ene soort zal een verfijning zijn van de blokken van het andere
type.

Vertrekkend van de Moufang set (X, (Ux)x∈X) is het duidelijk dat X pun-
tenverzameling P van de Ree meetkunde G = (P ,B, I) definieert, de cirkels
komen dan tevoorschijn als banen van een punt y onder het centrum Z(Ux)
voor een punt x ∈ P samen met dat punt x, dit punt x noemen we dan de
gnarl van die cirkel. Op die manier definieert elk punt elk punt-gnarl koppel
op unieke wijze een cirkel. De sferen zijn opnieuw banen van y maar nu onder
de groep [Ux, Ux]. Het punt x is dan de gnarl van de sfeer. De cirkels en de
sferen vormen samen de blokkenverzameling B van G.

Stelling B.3.1. De automorfismegroep van de Ree meetkunde G = (P ,B, I)
is volledig bevat in de automorfismegroep van de veralgemeende Ree zeshoek.

B.3.1 Idee achter het bewijs

We beschouwen een willekeurige afbeelding ϕ die de structuur van de Ree-
Tits Moufang set vasthoudt. Zonder verlies van algemeenheid mogen we
aannemen dat ϕ zowel (∞) als (0, 0, 0) vasthoudt. We kunnen nu de afgeleide
structuur G∞ beschouwen: onze nieuwe puntenverzameling is P maar dan
zonder het punt (∞), en enkel de blokken door (∞) worden nog beschouwd,
al wordt hier het punt (∞) van afgehaald. De cirkels die oorspronkelijk
gnarl (∞) hadden worden onze vertikale rechten, de andere cirkels noemen
we gewone rechten. Analoog spreken we van een vertikaal vlak als die in
de Ree meetkunde een cirkel met gnarl (∞) voorstelde en we definiëren de
andere sferen door (∞) als gewone vlakken. We kunnen een parallellisme
relatie definiëren op de gewone rechten: als voor twee gewone rechten er
precies 1 vertikale rechte bestaat die beide gewone rechten snijdt, dan zijn
de gewone rechten niet parallel, in de andere gevallen zijn die wel parallel.
Het voordeel van de afgeleide struktuur is dat hierin al die objecten en de
voorwaarde voor parallellisme algebräısch vertaald kunnen worden. Onze
automorfisme ϕ moet nu de parallellisme relatie bewaren, en omdat ϕ de
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gnarl van een cirkel C op de gnarl van diens beeld moet afbeelden moet ϕ de
volgende vorm hebben: (x, y, z)ϕ = (ℓxσ, ℓ1+θyσ, ℓ2+θzσ). Die actie bewaart
de structuur van de veralgemeende zeshoek.

Opmerking Met behulp van deze cirkels en sferen kunnen we ook aantonen
dat elke automorfisme van de Ree hexagon die de absolute punten bewaart
noodzakelijkerwijs de absolute rechten moet bewaren.
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