The category of Moufang sets Tom De Medts July 4, 2007 #### Abstract We make the class of Moufang sets into a category in such a way that it is compatible with other categories (such as the category of quadratic Jordan division algebras). This note is not intended for publication as it is. ### 1 Another notation for Moufang sets We start by recalling the definition of a Moufang set. **Definition 1.1.** A Moufang set is a set X together with a collection of subgroups $(U_x)_{x\in X}$, such that each U_x is a subgroup of $\mathrm{Sym}(X)$ fixing x and acting regularly (i.e. sharply transitively) on $X\setminus\{x\}$, and such that each U_x permutes the set $\{U_y\mid y\in X\}$ by conjugation. The group $G:=\langle U_x\mid x\in X\rangle$ is called the little projective group of the Moufang set; the groups U_x are called root groups. By the results of [1], every Moufang set can be obtained from a single group U (written additively, although not necessarily commutative) and a permutation $\tau \in \operatorname{Sym}(U^*)$, where $U^* := U \setminus \{0\}$; we denote this Moufang set as $\mathbb{M} = \mathbb{M}(U, \tau)$. The disadvantage of this notation is that the permutation τ is not uniquely determined by the Moufang set, and in particular, every μ_a (for each $a \in U^*$) can serve as the permutation τ , i.e. $\mathbb{M} = \mathbb{M}(U, \mu_a)$ for all $a \in U^*$. We therefore prefer to introduce the new notation $$\mathbb{M} = \mathbb{M}(U, (\mu_a)_{a \in U^*}) = \mathbb{M}(U, \boldsymbol{\mu}),$$ where μ denotes the collection of all the μ -maps $(\mu_a)_{a \in U^*}$. Note that μ is uniquely determined by the Moufang set. # 2 A bad attempt It is common to define isomorphisms between two Moufang sets in a general setting, as follows. **Definition 2.1.** Let $(X, (U_x)_{x \in X})$ and $(Y, (V_y)_{y \in Y})$ be two Moufang sets. A bijection β from X to Y is called an *isomorphism* of Moufang sets, if the induced map $\chi_{\beta} : \operatorname{Sym}(X) \to \operatorname{Sym}(Y) : g \mapsto \beta^{-1}g\beta$ maps each root group U_x isomorphically onto the corresponding root group $V_{x\beta}$. However, when we try to generalize this to arbitrary homomorphisms between Moufang sets, we run into problems. The natural try would be to say that a map β from X to Y is a homomorphisms of Moufang sets, if $$U_x \beta \subseteq \beta U_{x\beta}$$ for all $x \in X$. (2.1) But by the properties of Moufang sets, this can only be true if β is injective! Indeed, suppose that $x, w \in X$ are two distinct elements such that $x\beta = w\beta$, and choose a third element $z \in X$ with $x\beta \neq z\beta$. Let g be the unique element in U_x mapping w to z; then $wg\beta = z\beta$. But equation (2.1) implies $wg\beta \in w\beta U_{x\beta} = x\beta U_{x\beta} = \{x\beta\}$, so $z\beta = wg\beta = x\beta$ after all, a contradiction. ### 3 A better attempt It turns out to be better to restrict to "algebraic homomorphisms", i.e. homomorphisms preserving the chosen elements 0 and ∞ and restricting to group homomorphisms of U_{∞} (or equivalently, of U). Observe that already the notation $(X, (U_x)_{x \in X}) = \mathbb{M}(U, \mu)$ implies the existence of two distinguished elements $0, \infty$ in X which we would like to leave untouched. **Definition 3.1.** Let $\mathbb{M}_1 = \mathbb{M}(U, \boldsymbol{\mu})$ and $\mathbb{M}_2 = \mathbb{M}(V, \boldsymbol{\nu})$ be two Moufang sets. A *homomorphism* from \mathbb{M}_1 to \mathbb{M}_2 is a group homomorphism $\varphi : U \to V$ such that $\mu_a \varphi = \varphi \nu_{a\varphi}$ for all $a \in U^*$. It is straightforward to check that C, where ob(C) is the class of Moufang sets, and where hom(C) is the class of homormorphisms between Moufang sets, forms a category, which we will call the *category of Moufang sets* and denote by **MSet**. Composition of homomorphisms of **MSet** is given by composition of the corresponding group homomorphisms. The category **MSet** is of course not complete, since there are no products in general. It does admit equalizers, however. **Definition 3.2.** Let \mathcal{C} be a category, let $X,Y \in \text{ob}(\mathcal{C})$ and $\varphi, \psi \in \text{hom}(X,Y)$. An *equaliser* for (X,Y,φ,ψ) consists of an object E and a morphism eq: $E \to X$ satisfying $\varphi \circ \text{eq} = \psi \circ \text{eq}$, and such that, given any other object O and morphism $m: O \to X$, if $\varphi \circ m = \psi \circ m$, then there exists a unique morphism $u: O \to E$ such that eq $\circ u = m$. $$E \xrightarrow{\text{eq}} X \xrightarrow{\varphi} Y$$ $$\downarrow u \mid \qquad \downarrow m$$ $$O$$ It is clear from this universal property that if an equalizer exists, it is unique up to isomorphism. **Proposition 3.3.** The category MSet admits equalizers. *Proof.* Let $\mathbb{M}_1 = \mathbb{M}(U, \boldsymbol{\mu}), \mathbb{M}_2 = \mathbb{M}(V, \boldsymbol{\nu}) \in \text{ob}(\mathbf{MSet})$ and let $\varphi, \psi \in \text{hom}(\mathbb{M}_1, \mathbb{M}_2)$. Define the set $E := \{a \in U \mid a\varphi = a\psi\}$; it is clear that E is a subgroup of U. For each $a \in E^*$, let ρ_a be the restriction of μ_a to E. For all $a, b \in E^*$, we have $$(a\rho_b)\varphi = a\mu_b\varphi = a\varphi\nu_{b\varphi} = a\psi\nu_{b\psi} = a\mu_b\psi = (a\rho_b)\psi,$$ hence $a\rho_b \in E^*$ as well; this shows that $\mathbb{M}_0 := (E, \boldsymbol{\rho})$ is a Moufang set. It is now clear that \mathbb{M}_0 together with the inclusion map $\mathbb{M}_0 \hookrightarrow \mathbb{M}_1$ is an equalizer for $(\mathbb{M}_1, \mathbb{M}_2, \varphi, \psi)$. We will now focus on the Moufang sets arising from quadratic Jordan division algebras. **Definition 3.4.** Let (J, U, 1) and (J', U', 1') be two quadratic Jordan algebras (in the sense of McCrimmon [3]), possibly defined over different fields. Then a vector space homomorphism $\varphi: J \to J'$ is called a homotopy from J to J', if there is a vector space homomorphism $\psi: J \to J'$ such that $U_a\varphi = \psi U'_{a\varphi}$ for all $a \in J$; see [2, (93'), p.59]. Let **Jor** be the category of quadratic Jordan algebras with homotopies as morphisms, and let **DJor** be the subcategory of quadratic Jordan division algebras. **Proposition 3.5.** Let F be the map from $ob(\mathbf{DJor})$ to $ob(\mathbf{MSet})$ which maps each quadratic Jordan division algebra (J, U, 1) to its corresponding Moufang set $\mathbb{M}(J)$ as defined in [1]. Then F induces a faithful covariant functor from \mathbf{DJor} to \mathbf{MSet} . Proof. Let $J, J' \in \text{ob}(\mathbf{DJor})$ and let $\varphi \in \text{hom}(J, J')$. Let $\mathbb{M} := \mathbb{M}(J) = \mathbb{M}(U, \mu)$ and $\mathbb{M}' := \mathbb{M}(J') = \mathbb{M}(U', \mu')$; then U = (J, +) and U' = (J', +), and hence φ induces a group homomorphism $F(\varphi)$ from U to U' by forgetting the vector space structure of J and J'; we will also denote this group homomorphism by φ . We have to check whether $F(\varphi) \in \text{hom}(\mathbb{M}, \mathbb{M}')$, i.e. whether $\mu_a \varphi = \varphi \mu'_{a\varphi}$ for all $a \in U^*$. Recall that the fact that $\varphi \in \text{hom}(J, J')$ translates to $h_a \varphi = \psi h'_{a\varphi}$ for all $a \in U^*$. Taking b in place of a and substituting this back yields $h_a \varphi = h_b \varphi h'_{b\varphi}^{-1} h'_{a\varphi}$, or equivalently, $$h_b^{-1}h_a\varphi = \varphi h_{b\varphi}^{\prime -1}h_{a\varphi}^{\prime}$$ for all $a, b \in U^*$. We now use the fact that $h_a = \mu_1^{-1} \mu_a$ to get $$\mu_b^{-1}\mu_a\varphi = \varphi\mu_{b\varphi}^{\prime-1}\mu_{a\varphi}^{\prime}$$ for all $a, b \in U^*$. Applying this equation on (-b) and using the fact that $(-b)\mu_b^{-1} = b$ for all $b \in U^*$, we get $$b\mu_a\varphi = (b\varphi)\mu'_{a\varphi}$$ for all $a, b \in U^*$, i.e. $\mu_a \varphi = \varphi \mu'_{a\varphi}$ for all $a \in U^*$. This proves that that F is a covariant functor from **DJor** to **MSet**. Since for given $J, J' \in \text{ob}(\mathbf{DJor})$, every $\varphi \in \text{hom}(J, J')$ is mapped by F onto the corresponding element in $\text{hom}(\mathbb{M}(J), \mathbb{M}(J'))$, it is clear that the restriction of F to hom(J, J') is injective, i.e. F is a faithful functor. \square **Remark 3.6.** The functor F is not full. Indeed, suppose that J and J' are Jordan algebras defined over some (big) field k with prime field \mathbb{F} , then J and J' are also Jordan algebras over \mathbb{F} , and there could be \mathbb{F} -homotopies from J to J' which do not preserve the k-vector space structure of J. On the other hand, note that every group homomorphism from (J,+) to (J',+) is an \mathbb{F} -vector space homomorphism. If we denote the category of quadratic Jordan division algebras over prime fields (i.e. over finite fields or over \mathbb{Q}) as \mathbf{DJorP} , then the functor F decomposes as $$\mathbf{DJor} \xrightarrow{P} \mathbf{DJorP} \xrightarrow{Q} \mathbf{MSet}$$, where P is a forgetful functor and Q is a fully faithful functor. #### References - [1] T. De Medts and R. M. Weiss, Moufang sets and Jordan division algebras, *Math. Ann.* **335** (2006), no. 2, 415–433. - [2] N. Jacobson, Structure and representations of Jordan algebras, Amer. Math. Soc. Coll. Publ. 39, Providence, 1968. - [3] K. McCrimmon, A taste of Jordan algebras, Universitext, Springer-Verlag, New York, Berlin, Heidelberg, 2004.