The category of Moufang sets

Tom De Medts

July 4, 2007

Abstract

We make the class of Moufang sets into a category in such a way that it is compatible with other categories (such as the category of quadratic Jordan division algebras). This note is not intended for publication as it is.

1 Another notation for Moufang sets

We start by recalling the definition of a Moufang set.

Definition 1.1. A Moufang set is a set X together with a collection of subgroups $(U_x)_{x\in X}$, such that each U_x is a subgroup of $\mathrm{Sym}(X)$ fixing x and acting regularly (i.e. sharply transitively) on $X\setminus\{x\}$, and such that each U_x permutes the set $\{U_y\mid y\in X\}$ by conjugation. The group $G:=\langle U_x\mid x\in X\rangle$ is called the little projective group of the Moufang set; the groups U_x are called root groups.

By the results of [1], every Moufang set can be obtained from a single group U (written additively, although not necessarily commutative) and a permutation $\tau \in \operatorname{Sym}(U^*)$, where $U^* := U \setminus \{0\}$; we denote this Moufang set as $\mathbb{M} = \mathbb{M}(U, \tau)$. The disadvantage of this notation is that the permutation τ is not uniquely determined by the Moufang set, and in particular, every μ_a (for each $a \in U^*$) can serve as the permutation τ , i.e. $\mathbb{M} = \mathbb{M}(U, \mu_a)$ for all $a \in U^*$. We therefore prefer to introduce the new notation

$$\mathbb{M} = \mathbb{M}(U, (\mu_a)_{a \in U^*}) = \mathbb{M}(U, \boldsymbol{\mu}),$$

where μ denotes the collection of all the μ -maps $(\mu_a)_{a \in U^*}$. Note that μ is uniquely determined by the Moufang set.

2 A bad attempt

It is common to define isomorphisms between two Moufang sets in a general setting, as follows.

Definition 2.1. Let $(X, (U_x)_{x \in X})$ and $(Y, (V_y)_{y \in Y})$ be two Moufang sets. A bijection β from X to Y is called an *isomorphism* of Moufang sets, if the induced map $\chi_{\beta} : \operatorname{Sym}(X) \to \operatorname{Sym}(Y) : g \mapsto \beta^{-1}g\beta$ maps each root group U_x isomorphically onto the corresponding root group $V_{x\beta}$.

However, when we try to generalize this to arbitrary homomorphisms between Moufang sets, we run into problems. The natural try would be to say that a map β from X to Y is a homomorphisms of Moufang sets, if

$$U_x \beta \subseteq \beta U_{x\beta}$$
 for all $x \in X$. (2.1)

But by the properties of Moufang sets, this can only be true if β is injective! Indeed, suppose that $x, w \in X$ are two distinct elements such that $x\beta = w\beta$, and choose a third element $z \in X$ with $x\beta \neq z\beta$. Let g be the unique element in U_x mapping w to z; then $wg\beta = z\beta$. But equation (2.1) implies $wg\beta \in w\beta U_{x\beta} = x\beta U_{x\beta} = \{x\beta\}$, so $z\beta = wg\beta = x\beta$ after all, a contradiction.

3 A better attempt

It turns out to be better to restrict to "algebraic homomorphisms", i.e. homomorphisms preserving the chosen elements 0 and ∞ and restricting to group homomorphisms of U_{∞} (or equivalently, of U). Observe that already the notation $(X, (U_x)_{x \in X}) = \mathbb{M}(U, \mu)$ implies the existence of two distinguished elements $0, \infty$ in X which we would like to leave untouched.

Definition 3.1. Let $\mathbb{M}_1 = \mathbb{M}(U, \boldsymbol{\mu})$ and $\mathbb{M}_2 = \mathbb{M}(V, \boldsymbol{\nu})$ be two Moufang sets. A *homomorphism* from \mathbb{M}_1 to \mathbb{M}_2 is a group homomorphism $\varphi : U \to V$ such that $\mu_a \varphi = \varphi \nu_{a\varphi}$ for all $a \in U^*$.

It is straightforward to check that C, where ob(C) is the class of Moufang sets, and where hom(C) is the class of homormorphisms between Moufang sets, forms a category, which we will call the *category of Moufang sets* and denote by **MSet**. Composition of homomorphisms of **MSet** is given by composition of the corresponding group homomorphisms.

The category **MSet** is of course not complete, since there are no products in general. It does admit equalizers, however.

Definition 3.2. Let \mathcal{C} be a category, let $X,Y \in \text{ob}(\mathcal{C})$ and $\varphi, \psi \in \text{hom}(X,Y)$. An *equaliser* for (X,Y,φ,ψ) consists of an object E and a morphism eq: $E \to X$ satisfying $\varphi \circ \text{eq} = \psi \circ \text{eq}$, and such that, given any other object O and morphism $m: O \to X$, if $\varphi \circ m = \psi \circ m$, then there exists a unique

morphism $u: O \to E$ such that eq $\circ u = m$.

$$E \xrightarrow{\text{eq}} X \xrightarrow{\varphi} Y$$

$$\downarrow u \mid \qquad \downarrow m$$

$$O$$

It is clear from this universal property that if an equalizer exists, it is unique up to isomorphism.

Proposition 3.3. The category MSet admits equalizers.

Proof. Let $\mathbb{M}_1 = \mathbb{M}(U, \boldsymbol{\mu}), \mathbb{M}_2 = \mathbb{M}(V, \boldsymbol{\nu}) \in \text{ob}(\mathbf{MSet})$ and let $\varphi, \psi \in \text{hom}(\mathbb{M}_1, \mathbb{M}_2)$. Define the set $E := \{a \in U \mid a\varphi = a\psi\}$; it is clear that E is a subgroup of U. For each $a \in E^*$, let ρ_a be the restriction of μ_a to E. For all $a, b \in E^*$, we have

$$(a\rho_b)\varphi = a\mu_b\varphi = a\varphi\nu_{b\varphi} = a\psi\nu_{b\psi} = a\mu_b\psi = (a\rho_b)\psi,$$

hence $a\rho_b \in E^*$ as well; this shows that $\mathbb{M}_0 := (E, \boldsymbol{\rho})$ is a Moufang set. It is now clear that \mathbb{M}_0 together with the inclusion map $\mathbb{M}_0 \hookrightarrow \mathbb{M}_1$ is an equalizer for $(\mathbb{M}_1, \mathbb{M}_2, \varphi, \psi)$.

We will now focus on the Moufang sets arising from quadratic Jordan division algebras.

Definition 3.4. Let (J, U, 1) and (J', U', 1') be two quadratic Jordan algebras (in the sense of McCrimmon [3]), possibly defined over different fields. Then a vector space homomorphism $\varphi: J \to J'$ is called a homotopy from J to J', if there is a vector space homomorphism $\psi: J \to J'$ such that $U_a\varphi = \psi U'_{a\varphi}$ for all $a \in J$; see [2, (93'), p.59]. Let **Jor** be the category of quadratic Jordan algebras with homotopies as morphisms, and let **DJor** be the subcategory of quadratic Jordan division algebras.

Proposition 3.5. Let F be the map from $ob(\mathbf{DJor})$ to $ob(\mathbf{MSet})$ which maps each quadratic Jordan division algebra (J, U, 1) to its corresponding Moufang set $\mathbb{M}(J)$ as defined in [1]. Then F induces a faithful covariant functor from \mathbf{DJor} to \mathbf{MSet} .

Proof. Let $J, J' \in \text{ob}(\mathbf{DJor})$ and let $\varphi \in \text{hom}(J, J')$. Let $\mathbb{M} := \mathbb{M}(J) = \mathbb{M}(U, \mu)$ and $\mathbb{M}' := \mathbb{M}(J') = \mathbb{M}(U', \mu')$; then U = (J, +) and U' = (J', +), and hence φ induces a group homomorphism $F(\varphi)$ from U to U' by forgetting the vector space structure of J and J'; we will also denote this group homomorphism by φ . We have to check whether $F(\varphi) \in \text{hom}(\mathbb{M}, \mathbb{M}')$, i.e. whether $\mu_a \varphi = \varphi \mu'_{a\varphi}$ for all $a \in U^*$.

Recall that the fact that $\varphi \in \text{hom}(J, J')$ translates to $h_a \varphi = \psi h'_{a\varphi}$ for all $a \in U^*$. Taking b in place of a and substituting this back yields $h_a \varphi = h_b \varphi h'_{b\varphi}^{-1} h'_{a\varphi}$, or equivalently,

$$h_b^{-1}h_a\varphi = \varphi h_{b\varphi}^{\prime -1}h_{a\varphi}^{\prime}$$

for all $a, b \in U^*$. We now use the fact that $h_a = \mu_1^{-1} \mu_a$ to get

$$\mu_b^{-1}\mu_a\varphi = \varphi\mu_{b\varphi}^{\prime-1}\mu_{a\varphi}^{\prime}$$

for all $a, b \in U^*$. Applying this equation on (-b) and using the fact that $(-b)\mu_b^{-1} = b$ for all $b \in U^*$, we get

$$b\mu_a\varphi = (b\varphi)\mu'_{a\varphi}$$

for all $a, b \in U^*$, i.e. $\mu_a \varphi = \varphi \mu'_{a\varphi}$ for all $a \in U^*$. This proves that that F is a covariant functor from **DJor** to **MSet**.

Since for given $J, J' \in \text{ob}(\mathbf{DJor})$, every $\varphi \in \text{hom}(J, J')$ is mapped by F onto the corresponding element in $\text{hom}(\mathbb{M}(J), \mathbb{M}(J'))$, it is clear that the restriction of F to hom(J, J') is injective, i.e. F is a faithful functor. \square

Remark 3.6. The functor F is not full. Indeed, suppose that J and J' are Jordan algebras defined over some (big) field k with prime field \mathbb{F} , then J and J' are also Jordan algebras over \mathbb{F} , and there could be \mathbb{F} -homotopies from J to J' which do not preserve the k-vector space structure of J. On the other hand, note that every group homomorphism from (J,+) to (J',+) is an \mathbb{F} -vector space homomorphism. If we denote the category of quadratic Jordan division algebras over prime fields (i.e. over finite fields or over \mathbb{Q}) as \mathbf{DJorP} , then the functor F decomposes as

$$\mathbf{DJor} \xrightarrow{P} \mathbf{DJorP} \xrightarrow{Q} \mathbf{MSet}$$
,

where P is a forgetful functor and Q is a fully faithful functor.

References

- [1] T. De Medts and R. M. Weiss, Moufang sets and Jordan division algebras, *Math. Ann.* **335** (2006), no. 2, 415–433.
- [2] N. Jacobson, Structure and representations of Jordan algebras, Amer. Math. Soc. Coll. Publ. 39, Providence, 1968.
- [3] K. McCrimmon, A taste of Jordan algebras, Universitext, Springer-Verlag, New York, Berlin, Heidelberg, 2004.