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Abstract

We explicitly calculate the Hua maps for the Moufang sets of type
2A3, C3 and F4. We observe that there can be infinitely many differ-
ent elements with the same Hua map. This note is not intended for
publication as it is.

1 Description of the Moufang sets

Let k be an arbitrary commutative field, and let A be either a separable
quadratic extension field of k, a quaternion division algebra over k, or an
octonion division algebra over k. Let σ be the standard involution of A/k,
and let N(a) := aaσ and T (a) := a + aσ (for all a ∈ A) be the norm map
and the trace map of A/k, respectively. Let

U := {(a, b) ∈ A × A | N(a) + T (b) = 0} .

Then we can make U into a (non-abelian) group by defining the group
“addition”

(a, b) + (c, d) := (a + c, b + d − cσa)

for all (a, b), (c, d) ∈ U ; it is easily checked that this is indeed a group, with
neutral element (0, 0) and with the inverse given by −(a, b) = (−a, bσ). Now
we define a permutation τ on U∗, by setting

(a, b)τ = (−ab−1, b−1)

for all (a, b) ∈ U∗. Then M(U, τ) is a Moufang set.

These examples all arise from algebraic groups of relative rank one. De-
pending on whether A is a quadratic extension, a quaternion division algebra
or an octonion division algebra, the corresponding indices are as follows.

2A3 C3 F4
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Remark 1.1. When k = GF(2) and A = GF(4), this gives the smallest
example of a Moufang set with non-abelian root groups. It has U ∼= Q8,
and hence |X| = 9, and G ∼= PSU2(2).

2 Description of the Moufang sets

We now explicitly compute the Hua maps. Recall that

hx = τ · αx · τ−1 · α
−(xτ−1) · τ · α

−(−(xτ−1))τ

for all x ∈ U∗. Note that in our case, τ2 = 1 and hence τ−1 = τ . Let
x := (a, b) ∈ U∗ be arbitrary. Then

− (xτ−1) = (ab−1, b−σ) ;

− (−(xτ−1))τ = (ab−1bσ, b) .

We get
(c, d)τ · αx = (a − cd−1, b + d−1 + aσ · cd−1)

and hence

(c, d)τ · αx · τ−1 =
(

(cd−1 − a)(b + d−1 + aσ · cd−1), (b + d−1 + aσ · cd−1)−1
)

for all (c, d) ∈ U∗. Now let

A := (cd−1 − a)(b + d−1 + aσ · cd−1) + ab−1 ;

B := (b + d−1 + aσ · cd−1)−1 + b−σ − (ab−1)σ · (cd−1 − a)(b + d−1 + aσ · cd−1)−1 .

We finally get

(c, d)hx = (−AB−1 + ab−1bσ, B−1 + b + (ab−1bσ)σ · AB−1) (∗)

for all (c, d) ∈ U∗.

We will from now on assume that A is a division ring (i.e. we exclude
the case where A is an octonion division algebra). Then

B−1 = (b + d−1 + aσ · cd−1) · dbσ = bdbσ + bσ + aσcbσ ,

AB−1 = cbσ + ab−1bσ + ab−1aσcbσ ,

and we get, using the fact that aaσ + b + bσ = 0 and keeping in mind that
aaσ = aaσ ∈ k = Z(A), that

(c, d)hx = (ab−1bσa−1cbσ, bdbσ) (∗∗)

for all (c, d) ∈ U∗.
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Note that, if A is a quadratic extension of k, then it is commutative, and
hence this formula simplifies to

(c, d)hx = (b−1(bσ)2 · c, bbσ · d) (†)

for all (c, d) ∈ U∗.

Remark 2.1. Formula (†) is independent of a, and hence there are many
elements x ∈ U∗ which have the same Hua map hx, namely all x = (a, b) with
fixed b and with any a such that N(a) = −T (b). This is in great contrast
with the case of special Moufang sets, where hx = hy implies x = ±y.

Remark 2.2. When A is an octonion division algebra, I expect a simpli-
fication of equation (∗) to a formula similar to equation (∗∗) above, but I
haven’t taken the time yet to do the (more involved) calculations.
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