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Abstract

The algebraic groups of type 1D
(2)
4 are classified by triples of quater-

nion algebras whose sum is trivial in the Brauer group. We explain on
an elementary level why this is true, and in the case where the charac-
teristic of the underlying field is not 2, we relate it to a cohomological
invariant which was introduced by Bartels.

We then proceed to show that the Moufang sets (i.e., the build-
ings corresponding to these groups) contain enough information to re-
cover the three quaternion algebras and the three corresponding skew-
hermitian forms, thereby solving the “isomorphism problem” for this
class of Moufang sets.

These notes date back to early 2007 but have been slightly up-
dated in 2017 before making available online. They are not intended
for publication in their current form. (The paper has been rejected
by 3 different people in the past, which proves that it is not worth
publishing; the main objection was that it is too elementary.)

1 Introduction

The algebraic groups of type D4 are very intriguing. On the one hand, they
belong to a classical family, but on the other hand, they often behave so
differently that it is not exaggerated to include them in the list of exceptional
groups. This is of course due to the peculiar symmetry in their diagram.

In this paper, we study the absolutely simple isotropic algebraic groups

of type 1D
(2)
4 and relative rank one, i.e. those with Tits index
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and not involving a diagram symmetry (i.e. of inner type). Of course, these
groups are well understood, but we will focus on a peculiar aspect arising
from the symmetry in the diagram. The anisotropic kernel G0 of such a
group is of type A1×A1×A1, and hence G0 = SL1(Q1)×SL1(Q2)×SL1(Q3)
for some quaternion division algebras Q1, Q2 and Q3. It follows, in fact, from
the theory of algebraic groups (see for example [12, Satz IV.6.3.1]) that it is
necessary and sufficient for such a group to exist, that [Q1]+ [Q2]+ [Q3] = 0
in the Brauer group Br(k).

However, the theory of algebraic groups does explain directly how these
three quaternion algebras can be obtained from the skew-hermitian form
which describes such a group, nor does it explain on an algebraic level why
we should be unable to distinguish between these three quaternion algebras
if we only know the algebraic group.

The first goal of this paper is precisely to understand this on a more
elementary algebraic level, and this is what we aim to do in section 2. It turns
out that, starting from one particular skew-hermitian form over one of the
quaternion division algebras, the two others can be obtained from a certain
cohomological invariant which was introduced by Bartels [2]. In our specific
case, however, this invariant can be constructed in a very elementary way
(although it would be difficult to trace down that it is indeed an invariant).

The second (and perhaps main) goal of this paper is to solve the “iso-
morphism problem” for the corresponding Moufang sets. Moufang sets were
introduced by Jacques Tits [16] precisely as an axiomatization of the abso-
lutely simple algebraic groups of relative rank one. (They were introduced
in the context of twin buildings, but this is not important for us.)

In our case of groups of type 1D
(2)
4 , these Moufang sets can be described

in an elementary way only using the skew-hermitian form which determines
the group. The underlying vector space, which is an 8-dimensional k-vector
space, has the structure of a vector space over each of these three quaternion
algebras Qi simultaneously, in such a way that these three multiplications
pairwise commute; in some sense, V becomes a “left”, “right” and “middle”
vector space at the same time (where it would of course be better to think
of these as the three directions in the Dynkin diagram).

In section 3, we show that the three quaternion algebras (and the three
corresponding skew-hermitian forms) can indeed be recovered starting from
the Moufang set, thereby solving the isomorphism problem for this class of
Moufang sets. It is interesting to note that we unexpectedly rely on the
theory of spreads in incidence geometry for the final step of this process.

We have separated the characteristic 2 case from the rest (see section 4)
for two reasons. First, the technical details in this case would interfere too
much with the general ideas; second, the Bartels invariant is only defined
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when the characteristic is not 2, so we cannot pursue this link —see, however,
Remark 2.5 below— though our main result continues to hold.

Acknowledgment
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2 Structure of the rank one groups of type 1D
(2)
4

Let k be an arbitrary commutative field with char(k) 6= 2. We start by

describing the algebraic groups of absolute type 1D
(2)
4 and k-rank one and

their corresponding Moufang sets. By [13], these groups are the groups
SU4(Q, f), where Q is a quaternion division algebra over k, and f is a
non-degenerate skew-hermitian form with trivial discriminant and index 1,
relative to the standard involution σ of Q. Such a form f is uniquely deter-
mined by its anisotropic part h, which is a form of dimension 2 over Q with
trivial discriminant.

So let X be a 2-dimensional right vector space over Q, let σ be the
standard involution of Q, and let N and T be the norm and the trace from
Q to k, respectively, i.e. N(t) = tσt and T (t) = tσ + t for all t ∈ Q. Let h
be an anisotropic skew-hermitian form from X × X to Q. We denote the
pseudo-quadratic form corresponding to h by π, i.e. π(a) := h(a, a)/2 for all
a ∈ X. Observe that T (π(a)) = 0 for all a ∈ X. Let g be the map from
X ×X to k defined by

g(a, b) := π(a+ b)− π(a)− π(b)− h(a, b) (2.1)

for all a, b ∈ X; it is easily checked that

g(a, b) = T (h(b, a))/2 (2.2)

for all a, b ∈ X.

2.1 The Moufang set

Definition 2.1. A Moufang set is a set X together with a collection of
permutation groups (Ux)x∈X , where each Ux ≤ Sym(X) fixes x and acts

sharply transitively on X \ {x}, such that Uψx = Uxψ for every ψ ∈ G+ :=
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〈Uy | y ∈ X〉. The groups Ux are called the root groups of the Moufang set,
and the group G+ is called the little projective group.

This notion was introduced by J. Tits [16] as an axiomatization of some
of the structure of the absolutely simple algebraic groups of relative rank one.
More precisely, if G is such an algebraic group defined over k of k-rank 1,
then the set X is the set of all minimal k-parabolics of G, and each root
group Ux is precisely the root subgroup of the k-parabolic subgroup x (which
in this case coincides with the unipotent radical of the k-parabolic x); the
action is given by conjugation. The group G+ is precisely the group of
k-rational points of the adjoint representation of G.

Each Moufang set is completely determined by the structure of one (and
hence all) of the root groups, together with one additional permutation τ of
the non-trivial elements of this group, as we now explain.

Definition 2.2. Let (U,+) be an arbitrary group (not necessarily abelian
but nevertheless written additively), and let τ ∈ Sym(U∗), where U∗ :=
U \ {0}. Define a set X := U ∪ {∞}, where ∞ is a new symbol. We extend
τ to an element of Sym(X) by demanding that it exchanges the elements 0
and ∞.

Next, we define subgroups Ux ≤ Sym(X) as follows. For each a ∈ U , let
αa be the permutation of X fixing ∞ and mapping each x ∈ U to x + a.
Then U∞ := {αa | a ∈ U} is a subgroup of Sym(X) isomorphic to U . Now
define U0 := U τ∞ (where we mean conjugation by τ inside Sym(X)), and for
each a ∈ U∗, define Ua := Uαa0 . Denote the resulting data (X, (Ux)x∈X) by
M(U, τ).

Then M(U, τ) is not always a Moufang set, but every Moufang set can
be obtained in this fashion; see, for instance, [4, 3].

The Moufang set corresponding to h, i.e. corresponding to the group
SU4(Q, f), is equal to M(U, τ), where U is the (abstract) non-abelian group
with underlying set X × k and with group “addition” given by

(a, s) + (b, t) = (a+ b, s+ t+ g(a, b))

for all (a, s), (b, t) ∈ U , and where τ is the map from U∗ to itself given by

τ : (a, s) 7→ (a(s+ π(a))−1,−sN(s+ π(a))−1)

for all (a, s) ∈ U∗.

Remark 2.3. These formulas can be calculated from [17, (32.9)]; note that
our group U is isomorphic to the group T in [17] under the isomorphism
U → T : (a, s) 7→ (a, s + π(a)). More precisely, the permutation τ can be
obtained as τ = κ ◦ inv = inv ◦ λ, where µ(x1(z)) = x5(κ(z))x1(z)x5(λ(z)),
and where inv(z) := −z, for all z ∈ U∗. Observe that we have used the fact
that T (π(a)) = 0 to obtain the formula for τ .
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2.2 The structure of h

We will first examine the structure of the skew-hermitian form h. By [9,
Chapter 7, Theorem 6.3], (X,h) has a basis consisting of two pairwise or-
thogonal vectors, say u and v, and hence X = uQ ⊥ vQ. So there exist
fixed elements z, w ∈ Q such that

h(ux1 + vy1, ux2 + vy2) = xσ1zx2 + yσ1wy2 (2.3)

for all x1, x2, y1, y2 ∈ Q; since h is skew-hermitian, we have T (z) = T (w) = 0.
Since disc(h) = 1 ∈ k∗/(k∗)2, we have N(z)N(w) ∈ (k∗)2 and therefore
N(z) = r2N(w) for some r ∈ k∗. It follows that 〈1, z〉 and 〈1, w〉 are
isomorphic subfields of Q. Since any two isomorphic subfields of Q are
conjugate in Q, we have tσwt ∈ 〈1, z〉 for some t ∈ Q. But since T (tσwt) =
T (z) = 0, this implies that tσwt = sz for some s ∈ k∗. (We are grateful to
Richard Weiss for this argument.) If we now replace the basis vector v by
v′ = vt, then we get from (2.3) that

h(ux1 + v′y1, ux2 + v′y2) = xσ1zx2 + yσ1 t
σwty2

= xσ1zx2 + syσ1 zy2 (2.4)

for all x1, x2, y1, y2 ∈ Q. Conversely, any skew-hermitian form h of the form
(2.4) has trivial discriminant.

Now let E := 〈1, z〉; then E is a quadratic subfield of Q. Following the
notation in [17], we write Q = (E/k, δ) where δ ∈ k∗, i.e. Q = E ⊕ eE,
where ae = eaσ for all a ∈ E and e2 = δ.

Lemma 2.4. Let h be an arbitrary 2-dimensional skew-hermitian form over
a quaternion division algebra Q with trivial discriminant, and write

h(ux1 + vy1, ux2 + vy2) = xσ1zx2 + syσ1 zy2

for all x1, x2, y1, y2 ∈ Q. Let Q = E ⊕ eE as above. Then h is anisotropic
if and only if

s 6∈ −N(E) ∪N(eE) .

Proof. First assume that h is anisotropic. If we would have s = −N(t) for
some t ∈ E, then we would have 2π(ut+v′) = tσzt−N(t)z = 0, contradicting
the fact that h is anisotropic. If we would have that s = N(et) for some
t ∈ E, then we would have 2π(u(et) + v′) = −etzet + N(et)z = 0, again
contradicting the fact that h is anisotropic.

Conversely, assume that h is isotropic. Then there exist elements x, y ∈
Q such that π(ux + vy) = 0. (Observe that π(ux + vy) can never be an
element of k∗ since its trace is 0.) Hence xσzx = −syσzy. Let w := xy−1,
then this implies that

wσzw = −sz . (2.5)
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Taking norms, we get that N(w)2N(z) = s2N(z) and hence s = ±N(w).

If s = −N(w), then (2.5) becomes wσzw = wσwz and hence zw = wz,
implying that w commutes with E. But since CentQ(E) = E, this implies
that w ∈ E, and therefore s = −N(w) ∈ −N(E).

On the other hand, if s = N(w), then (2.5) becomes wσzw = −wσwz
and hence zw = −wz. This implies that z · ew = ezσw = −ezw = ew · z,
and therefore ew ∈ CentQ(E) = E, implying that w ∈ eE. We conclude in
this case that s = N(w) ∈ N(eE).

Remark 2.5. Even though this result is stated in terms of the subfield
E, this subfield is not an invariant of the skew-hermitian form h, since
it depends on the choice of the first basis vector u, which is completely
arbitrary.

2.3 Three related skew-hermitian forms

We will now construct three different skew-hermitian forms, defined over
three different quaternion division algebras, which will nevertheless give rise
to the same Moufang set. The calculations appearing in this section are of
course not very deep, but it is intriguing to observe how everything works
out well. They might also be useful for later reference.

So let Q1, Q2 and Q3 be three quaternion division algebras such that
[Q1] + [Q2] + [Q3] = 0 in the Brauer group Br(k). By a famous theorem of
Albert [8, (16.30)], this implies that these three quaternion algebras have a
quadratic subfield E in common (which is not necessarily unique). Hence we
can find constants α, β, γ ∈ k∗ such that Q1

∼= (E/k, αβ), Q2
∼= (E/k, βγ),

and Q3
∼= (E/k, αγ). (Of course, two constants would be sufficient to de-

scribe this situation, but we prefer to use three constants to have a symmetric
description.) As in the previous paragraph, we let e1 be the element of Q1

such that ae1 = e1a
σ for all a ∈ E and e21 = αβ; similarly we define e2 ∈ Q2

and e3 ∈ Q3.

Now let X = E ⊕ E ⊕ E ⊕ E. We will view X as a vector space over
all three quaternion division algebras simultaneously, in such a way that the
three scalar multiplications commute. This very peculiar situation can be
achieved as follows.

Proposition 2.6. Let X = E ⊕E ⊕E ⊕E, and define the following multi-
plications on X, for all t ∈ E, and where the ei are the elements of Qi (for
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i = 1, 2, 3) as above.

(a, b, c, d) •1 t := (at, btσ, ct, dt) ; (a, b, c, d) •1 e1 := (αβb, a, βdσ, αcσ) ;

(a, b, c, d) •2 t := (at, bt, ctσ, dt) ; (a, b, c, d) •2 e2 := (αγc, γdσ, a, αbσ) ;

(a, b, c, d) •3 t := (at, bt, ct, dtσ) ; (a, b, c, d) •3 e3 := (βγd, γcσ, βbσ, a) ;

for all a, b, c, d ∈ E. Then these multiplications extend to scalar multiplica-
tions •i by Qi (for each i); moreover, •i and •j commute when i 6= j (but
not when i = j!).

Proof. It is easily checked that each •i extends to a scalar multiplication by
Qi (for example, x •1 t •1 e1 = x •1 e1 •1 tσ and x •1 e1 •1 e1 = x •1 αβ for
all x ∈ X). On the other hand, an equally easy calculation shows that the
scalar multiplications •i and •j commute when i 6= j.

Let z be a fixed element of E such that T (z) = 0. We now fix our
attention on Q1 and the scalar multiplication •1; we will simply write · in
place of •1. Let u := (1, 0, 0, 0) ∈ X and v := (0, 0, 1, 0) ∈ X; then

(a, b, c, d) = u · (a+ e1b
σ) + v · (c+ α−1e1d)

for all a, b, c, d ∈ E. We now define a skew-hermitian form h1 over Q1 with
trivial discriminant, by the formula (2.4) with s = −αγ. Note that N(e1) =
−e21 = −αβ. Since Q3 is a division algebra, −s = αγ 6∈ N(E). Since Q2 is
a division algebra, sN(α−1e1) = βγ 6∈ N(E) and hence s 6∈ N(e1E) either.
By Lemma 2.4 therefore, h1 is anisotropic.

The explicit formulas for the skew-hermitian form h1 and its correspond-
ing pseudo-quadratic form π1 are given by

h1((a1, b1, c1, d1), (a2, b2, c2, d2))

= z(aσ1a2 + αβb1b
σ
2 − αγcσ1c2 − βγdσ1d2)

− e1z(a1bσ2 + bσ1a2 − γ(c1d2 + d1c2)) ; (2.6)

π1(a, b, c, d) = z
(
N(a) + αβN(b)− αγN(c)− βγN(d)

)
/2− e1z(abσ − γcd) .

Completely similarly, we can define anisotropic skew-hermitian forms h2 and
h3 (over Q2 and Q3, respectively) and we get

h2((a1, b1, c1, d1), (a2, b2, c2, d2))

= z(aσ1a2 − αβbσ1b2 + αγc1c
σ
2 − βγdσ1d2)

− e2z(a1cσ2 + cσ1a2 − β(b1d2 + d1b2)) ;

π2(a, b, c, d) = z
(
N(a)− αβN(b) + αγN(c)− βγN(d)

)
/2− e2z(acσ − βbd) ;
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h3((a1, b1, c1, d1), (a2, b2, c2, d2))

= z(aσ1a2 − αβbσ1b2 − αγcσ1c2 + βγd1d
σ
2 )

− e3z(a1dσ2 + dσ1a2 − α(b1c2 + c1b2)) ;

π3(a, b, c, d) = z
(
N(a)− αβN(b)− αγN(c) + βγN(d)

)
/2− e3z(adσ − αbc) .

Already by their construction, these three forms are not unrelated, but
it turns out that they have some important related objects in common.

Proposition 2.7. Let h1, h2 and h3 be the three skew-hermitian forms
defined above. Then

NQ1/k(s+ π1(x)) = NQ2/k(s+ π2(x)) = NQ3/k(s+ π3(x)) ; (2.7)

x •1 (s+ π1(x)) = x •2 (s+ π2(x)) = x •3 (s+ π3(x)) ; (2.8)

g1(x, y) = g2(x, y) = g3(x, y) ; (2.9)

for all x, y ∈ X and all s ∈ k. In particular, these three forms define the
same Moufang set.

Proof. First, observe that these three forms are defined over different quater-
nion division algebras, but if we take the norm of their values, then we end
up in their common center k, so it makes indeed sense to compare the maps
NQi/k ◦ πi. We get

N(π1(a, b, c, d)) = N(z)
(
N(a) + αβN(b)− αγN(c)− βγN(d)

)2
/4

− αβN(z)N(abσ − γcd)

= N(z)/4 ·
(
N(a)2 + α2β2N(b)2 + α2γ2N(c)2 + β2γ2N(d)2

− 2αβN(a)N(b)− 2αγN(a)N(c)− 2βγN(a)N(d)

− 2α2βγN(b)N(c)− 2β2αγN(b)N(d)

− 2γ2αβN(c)N(d) + 4αβγT (abσcσdσ)
)

for all a, b, c, d ∈ E. In a similar way, we can calculate N(π2(a, b, c, d)) and
N(π3(a, b, c, d)), and we get the same result, hence NQ1/k◦π1 = NQ2/k◦π2 =
NQ3/k ◦ π3. Since T (π(x)) = 0 for all x ∈ X, it follows, in fact, that

N(s+ π1(x)) = N(s+ π2(x)) = N(s+ π3(x))

for all x ∈ X and all s ∈ k, which proves (2.7). By similar calculations, one
can check that, for each i ∈ {1, 2, 3}, we get

(a, b, c, d) •i πi(a, b, c, d)

=
(

az
(
N(a)− αβN(b)− αγN(c)− βγN(d)

)
/2 + αβγzbcd ,

bz
(
N(a)− αβN(b) + αγN(c) + βγN(d)

)
/2 − γzacσdσ ,

cz
(
N(a) + αβN(b)− αγN(c) + βγN(d)

)
/2 − βzabσdσ ,

dz
(
N(a) + αβN(b) + αγN(c)− βγN(d)

)
/2 − αzabσcσ

)
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for all a, b, c, d ∈ E; this proves (2.8). Moreover, using (2.2), it is readily
checked that

gi((a1, b1, c1, d1), (a2, b2, c2, d2))

= T
(
z(aσ1a2 − αβbσ1b2 − αγcσ1c2 − βγdσ1d2)

)
for all aj , bj , cj , dj ∈ E and for each i ∈ {1, 2, 3}, and hence (2.9) holds.

Looking back at the construction of the Moufang set in paragraph 2.1,
it now follows from the equalities (2.7), (2.8) and (2.9) that the three skew-
hermitian forms h1, h2 and h3 give rise to the same Moufang set.

2.4 The Bartels invariant

It is natural to ask what the deeper connection is between the three skew-
hermitian forms of the previous paragraph. It will turn out that they are
related by a certain cohomological invariant which has been introduced by
Bartels [2]. In its full generality, this invariant is defined on pairs of skew-
hermitian forms over a given quaternion division algebra Q which have the
same dimension and the same discriminant. We will only need the invariant
when one of the two forms is a hyperbolic form (i.e. of maximal Witt index);
hence the other form will need to have trivial discriminant.

We will sketch the construction of this invariant in this specific case;
see [2] for more details. (Those familiar with cohomological invariants will
perhaps find our sketch already too detailed.) So let h be an arbitrary
skew-hermitian form over Q with trivial discriminant, and let j a hyperbolic
form over Q of the same dimension. Let K denote the separable closure of
k = Z(Q). For every finite Galois extension L/k which splits h, there exists
a Q⊗kL-isomorphism ϕ mapping h⊗kL to j⊗kL. For every s ∈ Gal(L/k),
let as := ϕ−1 ◦ sϕ ; then this defines a cocycle (as) ∈ H1(Gal(L/k), U(j)L),
which is independent of the choice of ϕ. Taking the projective limit over
all such extensions, we obtain an element a(h) of H1(k, U(j)), which only
depends on the Q-isomorphism class of h. Now consider the exact sequence

1→ SU(j)K → U(j)K → Z2 → 1

which induces the exact Galois cohomology sequence

1→ SU(j)k → U(j)k → Z2
ψ→ H1(k, SU(j))

ι→ H1(k, U(j))

δ→ H1(k,Z2) ∼= k∗/(k∗)2 .

Since disc(h) = 1 ∈ k∗/(k∗)2, we have a(h) ∈ ker(δ) = im(ι). Since Q is a
division algebra over k, we have SU(j)k = U(j)k, and hence ψ is injective.
Therefore ker(ι) = im(ψ) = Z2, and in fact, every fiber of ι contains exactly
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two elements. In particular, there are exactly two cohomology classes, say
with representatives (bs) and (b′s), in H1(k, SU(j)) whose image under ι is
a(h). Now consider the exact sequence

1→ Z2 → Spin(j)K
χ→ SU(j)K → 1

(with an appropriate notion of the spin group for skew-hermitian forms).
Then for each s ∈ Gal(K/k), the elements bs, b

′
s ∈ SU(j)K can be lifted

to Spin(j)K in such a way that the maps s 7→ bs and s 7→ b′s are still
continuous (but of course not cocycles in general). Now let cs,t := bs

sbtb
−1
st

for all s, t ∈ Gal(K/k) and define c′s,t similarly. Then χ(cs,t) = 1 and hence
cs,t ∈ Z2 for all s, t, and therefore the maps (s, t) 7→ cs,t and (s, t) 7→ c′s,t
define cocycles in H2(k,Z2) ∼= Br2(k), the 2-torsion subgroup of Br(k). It
turns out that

c+ c′ = [Q] ,

and hence the pair (c, c′) can be seen as an element of Br2(k)/[Q]. Since the
whole construction only depends on the Q-isomorphism class of h, this pair
(c, c′) is indeed an invariant, which we will denote by c(h).

Proposition 2.8. Let h be an arbitrary skew-hermitian form over Q with
discriminant δ := disc(h), let t ∈ k∗ be arbitrary, and let f := h ⊥ th; then
disc(f) = 1.

(i) If δ = 1, then c(f) = 0 mod [Q].

(ii) If δ 6= 1, then let E := k(
√
δ) be the discriminant extension field of h.

Then c(f) = [E/k,−t] mod [Q].

Proof. This follows from [2, Satz 4 (iv),(v)].

Using Proposition 2.8, it is not difficult to compute the Bartels invariant
c(hi) for the skew-hermitian forms of the previous section. Let us concen-
trate on h1, for example, and recall that h1 has the form

h1(ux1 + vy1, ux2 + vy2) = xσ1zx2 − αγyσ1 zy2

for all xj , yj ∈ Q1. Let h be the one-dimensional form mapping (ux1, ux2)
to xσ1zx2 for all x1, x2 ∈ Q1; then clearly h1 ' h ⊥ −αγh. Also, disc(h) =
N(z)(k∗)2 is non-trivial; in fact, the discriminant extension field is precisely
the field E = 〈1, z〉. It therefore follows from Proposition 2.8(ii) that

c(h1) = [E/k, αγ] mod [Q1]

= [Q3] mod [Q1] .

Remembering that [Q3] + [Q1] = [Q2], this is equivalent to saying that c(h1)
is in fact equal to the pair ([Q2], [Q3]). The converse also holds:
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Proposition 2.9. Let Q1, Q2 and Q3 be three quaternion division algebras
with [Q1] + [Q2] + [Q3] = 0 in Br(k). Up to similarity, h1 is the only
2-dimensional skew-hermitian form over Q1 with trivial discriminant and
with Bartels invariant ([Q2], [Q3]).

Proof. We have already computed the Bartels invariant of h1 above. So let
h′ be an arbitrary 2-dimensional skew-hermitian form over Q1 with trivial
discriminant and with Bartels invariant ([Q2], [Q3]). By paragraph 2.2, we
know that we can write h′ in the form

h′ ' h ⊥ sh

where h is the one-dimensional form mapping (ux1, ux2) to xσ1zx2 for all
x1, x2 ∈ Q1, as above. It remains to show that sh ' −αγh. Since c(h′) =
[E/K,−s] mod [Q1], we know that [E/K,−s] = [Q2] or [E/K,−s] = [Q3],
and therefore −sαγ ∈ N(E) or −sβγ ∈ N(E).

Assume first that −αγ = sN(t) for some t ∈ E, and let u′ := ut.
Then sh(u′x1, u

′x2) = sxσ1 t
σztx2 = −αγxσ1zx2, showing that sh ' −αγh.

Assume now that −βγ = sN(t) for some t ∈ E, and let u′ := ue1tβ
−1.

Then sh(u′x1, u
′x2) = β−2sxσ1 t

σeσ1ze1tx2 = −αγxσ1zx2, showing again that
sh ' −αγh.

It is clear that similar results hold when the roles of Q1, Q2 and Q3 are
permuted. Hence we have characterized the three skew-hermitian forms h1,
h2 and h3 in terms of their defining quaternion algebra and their Bartels
invariant only.

Remark 2.10. As Eva Bayer-Fluckiger pointed out to the author, the Bar-
tels invariant for forms with trivial discriminant had already been intro-
duced by J. Tits [14] in a different manner which is also valid in the case
char(k) = 2. More precisely, Tits introduces the notion of a Clifford algebra
Cl(π) corresponding to a pseudo-quadratic form π (over any central sim-
ple algebra D of degree d), and shows that if the discriminant is trivial,
then Cl(π) decomposes as the direct sum of two simple algebras C1 and C2.
Moreover, if d is even (in particular if D is a quaternion division algebra),
then [C1] + [C2] = [D]. See [14, Proposition 7].

Remark 2.11. One of the referees cleverly observed that there is another,
probably more natural, way to explain the three pairwise commuting mul-
tiplications and the connection with the Bartels invariant, in terms of the
Clifford algebra of the skew-hermitian form (see Remark 2.10!), as follows.

Since [Q1] + [Q2] + [Q3] = 0 in Br(k), we have Q1 ⊗Q2 ⊗Q3
∼= End(X)

for some 8-dimensional vector space X over k. Moreover, there is a non-
degenerate alternating bilinear form b on X, uniquely determined up to
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a scalar, whose adjoint involution is σ1 ⊗ σ2 ⊗ σ3. We can view X as a
2-dimensional vector space over each Qi, hence

Q2 ⊗Q3
∼= EndQ1(X), Q1 ⊗Q3

∼= EndQ2(X), Q1 ⊗Q2
∼= EndQ3(X).

So for each i, there is a skew-hermitian form hi on the Qi-vector space X,
whose adjoint involutions are

σ2 ⊗ σ3, σ1 ⊗ σ3, σ1 ⊗ σ2,

respectively. Let Ti be the reduced trace form of Qi; then the transfers
Ti(hi(x, y)) are alternating bilinear k-forms whose adjoint involution is σ1⊗
σ2 ⊗ σ3, for each i. Hence we may assume, after rescaling, that

b(x, y) = T1(h1(x, y)) = T2(h2(x, y)) = T3(h3(x, y))

for all x, y ∈ X.

The fact that the adjoint involution of h1 is σ2 ⊗ σ3 now yields immedi-
ately that the Clifford algebra of h1 is Q2 ×Q3, and if both Q2 and Q3 are
division algebras, then h1 is anisotropic [8, (15.12), (15.14)].

3 Recovering the structure from the Moufang set

We now take the opposite point of view. We start from the rank one group
(or equivalently, from the Moufang set), and we would like to recover as
much structure as possible. In view of the results in paragraph 2.3, we
cannot expect to recover the complete structure in a unique way, but we
hope to be able to recover “triples of related structures”. It will turn out
that this is indeed possible.

3.1 Properties of the Moufang set

Let h be an anisotropic skew-hermitian form of dimension 2 over a quater-
nion division algebra Q, with trivial discriminant. In view of Lemma 2.4,
we can write h in the form

h(ux1 + vy1, ux2 + vy2) = xσ1zx2 + syσ1 zy2 (3.1)

for all x1, x2, y1, y2 ∈ Q, with s 6∈ −N(E) ∪ N(eE). Let M(h) be the
Moufang set M(U, τ) as in paragraph 2.1, and denote its Hua maps by η(a,s)
for (a, s) ∈ U∗. (For the definition of these maps, which only depend on
U and τ , see [4, 3]; we use ηx in place of hx to avoid confusion with the
skew-hermitian map h. Note that these maps coincide with the “double µ-
maps”; see [4, Theorem 3].) By [17, (33.13)] and some calculation involving
the isomorphism U → T : (a, s) 7→ (a, s+ π(a)), we have

η(a,s)(b, t) =
((
b− a(s+ π(a))−1h(a, b)

)
· (s+ π(a))σ, tN(s+ π(a))

)
12



for all (a, s) ∈ U∗ and all (b, t) ∈ U . Observe that (X,+) ∼= U/Z(U) and that
each η(a,s) normalizes Z(U); hence each η(a,s) induces a k-endomorphism of
X (which we will continue to denote by η(a,s)) given by

η(a,s)(b) =
(
b− a(s+ π(a))−1h(a, b)

)
· (s+ π(a))σ (3.2)

for all (a, s) ∈ U∗ and all b ∈ X. We now consider the endomorphisms

ζa,s,t := η(a,s+t) − η(a,s) − η(0,t)

with a ∈ X∗, s ∈ k and t ∈ k∗. Using (3.2), we get

ζa,s,t(b) = a
(

(s+π(a))−1h(a, b)(s+π(a))σ−(s+t+π(a))−1h(a, b)(s+t+π(a))σ
)

for all a ∈ X∗, b ∈ X, s ∈ k and t ∈ k∗. Let Ea be the quadratic subfield
〈1, π(a)〉 ofQ, and let ea be an element ofQ orthogonal to Ea (with respect to
the trace T ofQ). Write h(a, b) = h1(a, b)+eah2(a, b) with h1(a, b), h2(a, b) ∈
Ea. Then

ζa,s,t(b) = ah1(a, b)
(

(s+π(a))−1(s+π(a))σ−(s+ t+π(a))−1(s+ t+π(a))σ
)

and therefore ζa,s,t(b) ∈ aEa = 〈a, aπ(a)〉 for all a ∈ X∗, s ∈ k and t ∈ k∗.
Hence

ζa,k,k∗(X) = 〈a, aπ(a)〉 (3.3)

for all a ∈ X∗. These two-dimensional k-subspaces will play a very impor-
tant role; we will denote them by Ra := 〈a, aπ(a)〉 for all a ∈ X∗.

Lemma 3.1. If b ∈ R∗a, then Rb = Ra.

Proof. Let b = as + aπ(a)t for certain s, t ∈ k. We only have to show
that bπ(b) ∈ Ra, and for that, it suffices to show that π(b) ∈ Ea. In-
deed, π(aπ(a)) = π(a)σπ(a)π(a) = N(π(a))π(a) ∈ Ea and h(aπ(a), a) =
π(a)σh(a, a) = π(a)σ2π(a) = 2N(π(a)) ∈ Ea, and hence π(b) = π(as +
aπ(a)) ∈ Ea as claimed.

Now let a ∈ X∗ be arbitrary and let b ∈ X \ Ra. By Lemma 3.1,
Ra∩Rb = 0, and hence La,b := 〈Ra, Rb〉 is a 4-dimensional k-subspace of X.
It turns out that some of these 4-spaces behave nicer than others.

Proposition 3.2. Let a ∈ X∗ be arbitrary. Then there exist precisely three

4-spaces L
(i)
a of the form La,b such that for each c ∈ L(i)

a , Rc ⊂ L(i)
a . In fact,

these three subspaces are the spaces a •i Qi for i ∈ {1, 2, 3}.
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Proof. Without loss of generality, we may assume that a = u as in (3.1). If
we write X = E⊕E⊕E⊕E as in paragraph 2.3, then Ra = (E, 0, 0, 0) ⊂ X.
Let b be an arbitrary element of X \Ra, i.e. b = (q, r, s, t) with q, r, s, t ∈ E
and r, s and t not all three equal to zero. Note that a = (1, 0, 0, 0).

Suppose that Rc ⊂ La,b for all c ∈ La,b. Since La,b is a k-subspace, this
implies that Raλ+cµ ⊂ La,b for all c ∈ La,b and all λ, µ ∈ k not both zero.
One computes that

(aλ+cµ)π(aλ+cµ) ≡ λµ
(
λ
(
cπ(a)+ah(a, c)

)
+µ

(
aπ(c)+ch(a, c)

))
(mod La,b)

for all c ∈ La,b and all λ, µ ∈ k. Since k is an infinite field, this implies that

cπ(a) + ah(a, c) ∈ La,b (3.4)

for all c ∈ La,b.
We now choose c = (0, r, s, t) ∈ La,b and we apply the explicit formula

(2.6). After some calculation, we obtain that

cπ(a) + ah(a, c) ≡
(
0, rz/2, sz/2, tz/2

)
(mod Ra)

cπ(c) ≡
(
0, rz/2 · νr, sz/2 · νs, tz/2 · νt

)
(mod Ra)

where

νr = − αβN(r) + αγN(s) + βγN(t) ,

νs = + αβN(r)− αγN(s) + βγN(t) ,

νt = + αβN(r) + αγN(s)− βγN(t) .

Since, by (3.4), cπ(a) + ah(a, c) ∈ La,b = (E, 0, 0, 0)⊕〈c, cπ(c)〉, this implies
that there exist elements λ, µ ∈ k such that(

0, rz/2 · νr, sz/2 · νs, tz/2 · νt
)

=
(
0, rz/2, sz/2, tz/2

)
· λ+ (0, r, s, t) · µ ;

since νr, νs, νt ∈ k and z 6∈ k, this can only occur if µ = 0. (Recall that r, s
and t are not all three equal to zero.)

Now suppose that r 6= 0 and s 6= 0. Then λ = νr = νs, implying
that βN(r) = γN(s) and hence βγ = N(γr−1s), contradicting the fact
that βγ 6∈ N(E). It follows that at most one (and hence exactly one) of
the elements r, s and t is non-zero. We conclude that La,b is one of the
subspaces (E,E, 0, 0), (E, 0, E, 0) or (E, 0, 0, E). Observe that these spaces
are equal to u •i Qi for i ∈ {1, 2, 3}.

Moreover, keeping in mind that aπ(a) = a •i πi(a) is independent of i by
(2.8), we get immediately that

(a •i xi)π(a •i xi) = a •i xi •i πi(a •i xi) ∈ a •i Qi

for all xi ∈ Qi and all i ∈ {1, 2, 3}, so that the subspaces L
(i)
a := a •i Qi do

indeed satisfy the required condition.
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The collection of all 4-spaces L
(i)
a for a fixed i forms an interesting

incidence-geometric object. We refer to [7], for example, for definitions of
the incidence-geometric notions which we will use.

Proposition 3.3. For each i ∈ {1, 2, 3}, let

Si := {a •i Qi | a ∈ X∗} .

Let X be the 7-dimensional projective space corresponding to X; the elements
of Si are 3-dimensional (projective) subspaces of X. Then Si is a k-regular
spread of X. Moreover, the translation plane arising from the spread Si is
isomorphic to the projective plane over Qi.

Proof. The last statement is obvious, since we can also view X as a 2-di-
mensional vector space over Q, which we can also look at as a projective
plane over Q; the elements of S are precisely the points of this projective
plane. The translation plane arising from this projective plane is this plane
itself, which proves the statement.

It is shown in the main theorem (Satz 1) of [6] that the translation
plane arising from a spread is regular if and only if the translation plane
is Moufang, from which the first statement follows, since a projective plane
over a division algebra is Moufang.

3.2 Recovering the three quaternion algebras

Using the properties of the Moufang set which we have derived in the previ-
ous paragraph, we can now reconstruct the quaternion algebras using only
the Moufang set M(U, τ).

To start with, the additive structure of k can be recognized as the cen-
ter Z(U) of the group U , and the additive structure of X as the quotient
U/Z(U). The maps η(a,s) in (3.2) are defined only using the Moufang set
(but we have of course no idea yet what the multiplication is or what h
and π are). We recognize (0, 1) as the only element (a, s) of U such that
η(a,s) = 1. We can define a “multiplication” map from X×k to X by setting
b · s := η(0,s)(b) for all b ∈ X and all s ∈ k; this fits with (3.2). In particular,
we have recovered the multiplication on k, since we can put r = s · t to be
the only element of k such that η(0,t)η(0,s) = η(0,r), for all s, t ∈ k. Hence X
has the structure of a k-vector space (which we know to be 8-dimensional).

By (3.3), we can recognize the subspaces Ra for all a ∈ X∗. By Proposi-

tion 3.2, we can recognize the three “nice” subspaces {L(1)
a , L

(2)
a , L

(3)
a } con-

taining Ra (but we cannot distinguish them from each other). However, we
know that

{L(i)
a | a ∈ X∗, i ∈ {1, 2, 3}} = {a •i Qi | a ∈ X∗, i ∈ {1, 2, 3}} .
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Denote this set of 4-spaces by F ; then by Proposition 3.3, F is the union of
three regular spreads. Moreover:

Proposition 3.4. The only three regular spreads which are contained in F
are S1, S2 and S3.

Proof. We will call an element of F of type i if it belongs to Si. Let S be an
arbitrary regular spread contained in F . Let K, L and M be three arbitrary
elements of S, and consider the regulus R through K, L and M . Since k is
infinite, there exist a j ∈ {1, 2, 3} such that at least three elements of R are
of type j. But since Sj is a regular spread, this implies that all elements of
R are of type j, and in particular, K, L and M have the same type. Since
K, L and M were arbitrary, we conclude that all elements of S are of the
same type, and hence S = Sj for some j ∈ {1, 2, 3}.

Using Proposition 3.4, we can recognize the three regular spreads Si =
{a •i Qi | a ∈ X∗}. By Proposition 3.3 again, we can reconstruct the
projective planes over the quaternion division algebraQi for each i ∈ {1, 2, 3}
as the translation planes of these spreads. But this implies that we can
recover the three quaternion algebras Qi (for example as the kernel of the
translation planes). More directly, we could also recover Qi from the spread
Si, as the ring {ψ ∈ Endk(X) | ψ(L) ⊆ L, ∀L ∈ Si}.

To conclude, we have recovered the three quaternion division algebras
Q1, Q2 and Q3, but we cannot distinguish between them. We still have to
show that for each Qi, we can recover the pseudo-quadratic form πi. So fix
an i, and let Ra := a •i Qi for all a ∈ X∗. Let a ∈ X∗ be arbitrary, and let
b be an element in X \ Ra such that η(b,0)(a) ∈ Ra. By equation (3.2), this
can only happen if h(a, b) = 0, and hence

η(a,0)(b) = b •i πi(a)σi , (3.5)

where σi is the standard involution of Qi. Hence πi(a) is the unique element
of Qi such that (3.5) holds. Thus we have recovered the pseudo-quadratic
form πi for each Qi.

This means that we have indeed recovered the triple of related structures
from the Moufang set, as we had claimed in the beginning of this section.

4 The characteristic two case

We now assume that char(k) = 2. In this case, the groups SU4(Q, f) are
sometimes denoted by SO4(Q, f), since they somehow behave more like
quadratic forms (see [13]). In the quaternionic case, which is precisely the
case we are dealing with, they have been studied by Seip-Hornix [10, 11]. We

16



can continue to consider the skew-hermitian form h and its corresponding
pseudo-quadratic form π as before (but of course, h is now a hermitian
form). The main difference is that π is not uniquely determined by h.
However, it is still true that h is the unique (skew-)hermitian form such
that h(a, a) = π(a)− π(a)σ; see [10, Theorem 1.4]. It is of course no longer
true that T (π(a)) = 0 for all a ∈ X, and neither is equation (2.2) still valid
(but equation (2.1) is). Note that π is only determined modulo k; this fact
will become more apparent in this case than in the case where char(k) 6= 2.
(In fact, we had avoided this issue in the char(k) 6= 2 case by defining π in
such a way that T (π(x)) = 0 for all x ∈ X, but we cannot avoid it in the
char(k) = 2 case.)

The group U and the permutation τ which define the Moufang set, now
take the following form. Just as in the case char(k) 6= 2, U is the group with
underlying set X × k and with group “addition” given by

(a, s) + (b, t) = (a+ b, s+ t+ g(a, b))

for all (a, s), (b, t) ∈ U ; but now τ is the map from U∗ to itself given by

τ : (a, s) 7→
(
a(s+ π(a))−1,

(
s+ T (π(a))

)
·N(s+ π(a))−1

)
for all (a, s) ∈ U∗.

As in section 2.2, we decompose X as uQ ⊥ vQ, hence there exist fixed
elements z, w ∈ Q such that

π(ux+ vy) = xσzx+ yσwy ;

h(ux1 + vy1, ux2 + vy2) = xσ1T (z)x2 + yσ1T (w)y2 ;

for all x, x1, x2, y, y1, y2 ∈ Q. Note that T (z) and T (w) have to be non-zero,
since h is non-degenerate. By [11], the (pseudo-)discriminant of π is equal
to the class of N(z)/T (z)2 + N(w)/T (w)2 modulo ℘(k) := {x + x2 | x ∈
k}. Since the discriminant is trivial in our case, we have N(z)/T (z)2 ≡
N(w)/T (w)2 mod ℘(k), and it is readily checked that this implies that
the fields 〈1, z〉 and 〈1, w〉 are isomorphic. Hence they are conjugate, and
therefore tσwt ∈ 〈1, z〉 for some t ∈ Q. After a suitable choice of a new
orthogonal basis (and keeping in mind that π is only determined modulo k),
we can write

π(ux+ vy) = xσzx+ syσzσy ;

h(ux1 + vy1, ux2 + vy2) = xσ1x2 + syσ1 y2 ;
(4.1)

observe that we have chosen z such that T (z) = 1, and that we have chosen
w = szσ rather than w = sz. Again, we let E := 〈1, z〉, and we write
Q = E ⊕ eE. Lemma 2.4 continues to hold: π is anisotropic if and only if
s ∈ N(e) ∪N(eE). Indeed, if π(ux + vy) ∈ k, then taking the trace yields
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s ∈ N(Q). Write s = N(w) with w ∈ Q, and let w = a + eb with a, b ∈ E;
a little calculation then shows that ab = 0 and hence s ∈ N(e) ∪N(eE).

We are now ready to define again three different pseudo-quadratic forms
which will give rise to the same Moufang set. We let α, β, γ ∈ k∗ and E, Q1,
Q2, Q3, e1, e2 and e3 be as in section 2.3. Now let z be a fixed element of
E such that T (z) = 1. We fix our attention on Q1 and we will simply write
· in place of •1. Let u := (1, 0, 0, 0) ∈ X and v := (0, 0, 1, 0) ∈ X; then

(a, b, c, d) = u · (a+ e1b
σ) + v · (c+ α−1e1d)

for all a, b, c, d ∈ E. We now define a pseudo-quadratic form π1 and its
corresponding hermitian form h1 over Q1 with trivial discriminant, by the
formulas (4.1) with s = αγ, and it follows as before that h1 is anisotropic.

The explicit formulas for the skew-hermitian form h1 and its correspond-
ing pseudo-quadratic form π1 are given by

h1((a1, b1, c1, d1), (a2, b2, c2, d2))

= (aσ1a2 + αβb1b
σ
2 + αγcσ1c2 + βγdσ1d2)

+ e1(a1b
σ
2 + bσ1a2 + γ(c1d2 + d1c2)) ;

π1(a, b, c, d) = z
(
N(a) +αβN(b)

)
+ zσ

(
αγN(c) + βγN(d)

)
+ e1(ab

σ + γcd) .

Completely similarly, we can define anisotropic pseudo-quadratic forms π2
and π3 with corresponding skew-hermitian forms h2 and h3 (over Q2 and
Q3, respectively); we will omit the explicit formulas here (which should be
obvious by now). One can check that NQ1/k ◦ π1 = NQ2/k ◦ π2 = NQ3/k ◦ π3
as well as TQ1/k ◦π1 = TQ2/k ◦π2 = TQ3/k ◦π3. It follows that equation (2.7)
continues to hold in the char(k) = 2 case. A direct calculation also shows
that equations (2.8) and (2.9) continue to hold, so we can conclude that the
three pseudo-quadratic forms define the same Moufang set, as we claimed.

Let us now take again the other point of view, and start with a given
Moufang set as in section 3. Up to some changes in the calculations, the
whole argument goes through, and we get the same result that we can recover
the three quaternion division algebras Q1, Q2 and Q3, but that we cannot
distinguish between them, and that for each Qi, there is a unique pseudo-
quadratic form πi with corresponding hermitian form hi which induces the
given Moufang set.

Let us point out the main technical difference, which arises from equation
(3.4). In the char(k) = 2 case, we obtain from this equation, with the same
choice c = (0, r, s, t) ∈ La,b, that

cπ(a) + ah(a, c) ≡
(
0, rz, sz, tz

)
(mod Ra)

cπ(c) ≡
(
0, r · νr, s · νs, t · νt

)
(mod Ra)
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where

νr = zσαβN(r) + zαγN(s) + zβγN(t) ,

νs = zαβN(r) + zσαγN(s) + zβγN(t) ,

νt = zαβN(r) + zαγN(s) + zσβγN(t) .

Since, by (3.4), cπ(a) + ah(a, c) ∈ La,b = (E, 0, 0, 0)⊕〈c, cπ(c)〉, this implies
that there exist elements λ, µ ∈ k such that(

0, r · νr, s · νs, t · νt
)

=
(
0, rz, sz, tz

)
· λ+ (0, r, s, t) · µ ,

which can be rewritten as(
0, r · (νr + λz + µ), s · (νs + λz + µ), t · (νt + λz + µ)

)
= 0 .

Now suppose that r 6= 0 and s 6= 0. Then λz + µ = νr = νs, implying
that βN(r) = γN(s) and hence βγ = N(γr−1s), contradicting the fact that
βγ 6∈ N(E). It follows that at most one (and hence exactly one) of the
elements r, s and t is non-zero. The rest of the proof is as in the char(k) 6= 2
case.

5 The rank one groups of type 2D
(2)
4

It is natural to ask in how far the theory developed in the main text still

applies to the rank one groups of type 2D
(2)
4 . These groups are defined in

the same way as those of type 1D
(2)
4 , the only difference being the fact that

the defining skew-hermitian form now has non-trivial discriminant. In this
case, we expect to be able to recover the defining quaternion division algebra
uniquely from the Moufang set, and this turns out to be so. This can be

shown in a completely similar manner as in the 1D
(2)
4 case, and we omit the

details.

Notice that there is no need for an analogue of Lemma 2.4, since an arbi-
trary 2-dimensional skew-hermitian form over a quaternion division algebra
Q with non-trivial discriminant is always anisotropic.

Keeping the notation of the main text, we can recover the defining
quaternion division algebra (which is now unique!) from the Moufang set,
using the same technique.

Proposition 5.1. Let a ∈ X∗ be arbitrary. Then there exist precisely one

4-space L
(i)
a of the form La,b such that for each c ∈ L(i)

a , Rc ⊂ L(i)
a . In fact,

this is the subspace aQ.

The rest of the process of recovering the structure from the Moufang set
can be copied without any change.
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